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Abstract
We study the problem of learning personalized
ranked lists of diverse items for multiple users,
from sequential observations of user preferences.
The user-item preference matrix is non-negative
and low-rank. Existing methods for solving simi-
lar problems are based on reconstructing the pref-
erence matrix from its noisy observations using
matrix factorization techniques, and typically re-
quire strong assumptions on the reconstructed ma-
trix. We depart from this standard approach and
consider a family of low-rank matrices, where the
set of most preferred items of all users is small
and can be learned efficiently. Moreover, in con-
trast to previous approaches, we assume that the
preference matrix is non-stochastic, and so our ap-
proach is more general. Then we learn to present
this set to each user in a personalized manner, in
the order of the descending preferences of the user.
We propose a computationally efficient algorithm
that implements this procedure, which we call
latent ranker (LRA). We evaluate the algorithm
empirically on several synthetic and real-world
datasets. In all experiments, we outperform exist-
ing state-of-the-art algorithms.

1. Introduction
In this work, we study the problem of learning personalized
ranked lists of diverse items for multiple users, from sequen-
tial observations of user preferences. We are interested in
utilizing latent similarities among users and items to learn
these lists much faster than learning a separate ranked list
for each user. The key structure in our problem is that the
user-item preference matrix is low rank, which is a standard
assumption in recommender systems (Koren et al., 2009;

*Equal contribution 1College of Information & Computer
Science, University of Massachusetts Amherst, Amherst, USA
2Google Research, Mountain View, California, USA 3Adobe Re-
search, San Jose, California, USA. Correspondence to: Subhojyoti
Mukherjee <subho@cs.umass.edu>, Branislav Kveton <bvke-
ton@google.com>, Anup B. Rao <anuprao@adobe.com >.

Preliminary work. Uploaded as Technical Report, Copyright 2019
by the author(s).

Ricci, 2011). The learning agent has access to noisy obser-
vations of the user-item matrix. It does not have access to
either user or item latent factors.

We formalize our learning problem as the following online
learning problem. At round t, a random user it from a pool
ofK users arrives to the recommender system. The learning
agent observes the identity of the user it, recommends a list
of d diverse items Jt from a pool of L items as a response,
and observes the preferences of user it for all recommended
items Jt. The user-item preference matrix is low-rank at
each round t, can vary substantially over time, and does
not have to be stochastic. The reward of the recommended
list is high when highly preferred items of the user are
recommended at higher positions. The goal of our learning
agent is to compete with the most rewarding diverse list for
each user in hindsight.

Our learning model is motivated by a real-world scenario,
where the learning agent suggests movies to users and each
movie belongs to different movie genres. The agent typ-
ically does not observe instantaneous preferences of the
user, and therefore suggests multiple movies that may be of
interest to the user under different circumstances. A simi-
lar model has also been studied in Carbonell & Goldstein
(1998) where the goal is to suggest a diversified list to each
incoming user that combines relevance to the query as well
as novelty. The authors suggest an approach where each
item in the list is relevant to the query but also has ”marginal
relevance” or less similarity with previously selected docu-
ments and this improves the quality of recommendation.

We make three major contributions. First, we formulate
our online learning problem as a latent ranked bandit on
low-rank matrices. We identify a family of non-negative
low-rank matrices where our problem can be solved sta-
tistically efficiently, without estimating the latent factors
of the user-item preference matrix. The key structure of
our matrix is that the set of optimal items of all users is
small and can be learned jointly for all users. Given these
items, the problem of learning the optimal order for each
user can be solved in the full-information setting and thus
is easy. Second, we propose a computationally-efficient
algorithm that implements this idea, which we call latent
ranker algorithm (LRA). The algorithm has two components,
column learning and row ranking, which learn the set of
optimal items of all users and then sort them, respectively.
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The column learning algorithm is similar to ranked bandits.
In particular, we learn the k-th most diverse item using a
multi-armed bandit, whose rewards are conditioned on the
rewards of k− 1 previously chosen items. The row learning
problem is solved separately for each user. Because it is in
the full-information setting, as we observe the individual
rewards of all recommended items, we solve it using the
weighted majority algorithm. Third, we evaluate LRA empir-
ically on several synthetic and real-world problems. Perhaps
surprisingly, LRA performs well even when our modeling
assumptions are violated.

The paper is organized as follows. We introduce necessary
background to understand our work in Section 2 and define
our online learning problem in Section 3. We propose our
algorithm in Section 4 and analyze its regret in Section 5.
In Section 6, we evaluate the algorithm empirically. In Sec-
tion 7, we survey related work. We conclude in Section 8.

2. Background
Let [n] = {1, . . . , n} be the set of the first n positive inte-
gers. For any two sets A and B, we denote by AB the set of
all vectors whose entries take values fromA and are indexed
by B. Let M be any m× n matrix. We index the rows and
columns of matrices by vectors. For any d and I ∈ [m]d,
M(I, :) denotes a d × n submatrix of M whose i-th row
is M(I(i), :). Similarly, for any d and J ∈ [n]d, M(:, J)
denotes a m × d submatrix of M whose j-th column is
M(:, J(j)). Let Πd be the set of all d-permutations. For
any π ∈ Πd and d-dimensional vector v, we denote by π(v)
the permutation of the entries of v according to π.

We focus on a family of low-rank matrices, which are known
as hott topics. We define a hott-topics matrix of rank d as
M = UV T, where U is a K × d non-negative matrix and
V is a L× d non-negative matrix that gives rise to the hott-
topics structure. In particular, we assume that there exist d
rows J∗ in V such that each row of V can be expressed as a
convex combination of rows J∗ and the zero vector,

∀j ∈ [L] ∃α ∈ A : V (J∗, :)α = V (j, :) , (1)

where A = {a ∈ [0, 1]d×1 : ‖a‖1 ≤ 1}.

The matrix M represents preferences of users for items,
M(i, j) is the preference of user i for item j. The rank d of
M is the number of latent topics. The matrix U are latent
preferences of K users over d topics, where U(i, :) are the
preferences of user i ∈ [K]. Without loss of generality,
we assume that U ∈ [0, 1]L×d. The matrix V are latent
preferences of L items in the space of d topics, where V (j, :)
are the coordinates of item j ∈ [L]. We assume that the
coordinates are points in a simplex, that is ‖V (j, :)‖1 ≤
1 for all j ∈ [L]. Note that our assumptions imply that
M(i, j) ≥ 0 for any i ∈ [K] and j ∈ [L].

3. Setting
We study an online learning to rank problem, which we call
a latent ranked bandit. At round t, the preferences of users
are encoded in a K × L preference matrix Mt = UtV

T,
where M , Ut, and V are defined as in Section 2. We assume
that user preferences Ut can change with time. A random
user it ∈ [K] arrives to the recommender system at time t
and we recommend d items Jt to this user. The reward for
recommending these items is rt(it, Jt), where

rt(i, J) = max {µ(k)Mt(i, J(k)) : k ∈ [d]} (2)

is the reward for recommending items J to user i at time t,
J(k) is the k-th item in J , and µ(k) is the weight of position
k ∈ [d]. We assume that higher-ranked positions are more
rewarding, 1 ≥ µ(1) ≥ · · · ≥ µ(d) ≥ 0. The learning
agent observes the individual rewards of all recommended
items, Mt(it, Jt(k)) for all k ∈ [d].

Since Ut can change arbitrarily over time, the reward in
(2) is maximized by lists J with highly rewarding items
that are diverse, in the sense that they attain high rewards at
different times t ∈ [n]. Because the rewards are weighted by
µ, more frequent highly-rewarding items should be placed
at higher positions. A remarkable property of our user-item
preference matrices Mt is that for any user i ∈ [K] at any
time t,

arg max
j∈[L]

Mt(i, j) ∈ J∗ ,

where J∗ is defined in (1). Therefore, it is possible to learn
all potentially most rewarding items statistically efficiently.

Now we are ready to define our notion of optimality and
regret. Let J∗ be the hott-topics items in (1) and π∗,i be
their permutation that maximizes the reward of user i in
hindsight,

π∗,i = arg max
π∈Πd

n∑
t=1

rt(i, π(J∗)) .

Let Jt be our recommended items at time t and πt,i be their
permutation for user i, both of which are learned. Then our
goal is to minimize the expected n-step regret,

R(n) =

n∑
t=1

E [rt(it, π∗,it(J∗))− rt(it, πt,it(Jt))] , (3)

where the expectation is with respect to both randomly ar-
riving users and potential randomness in the learning algo-
rithm.

4. Algorithm
We propose latent ranker algorithm (LRA) for solving the
personalized ranking problem. The pseudocode of LRA is
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in Algorithm 1. LRA has two main components, column
learning and row ranking.

The column learning algorithm recommends a list of d
columns and is the same as in Radlinski et al. (2008). But
we exploit an additional structure in our problem to show
that we learn the optimal columns J∗. The column learning
algorithm are d instances of multi-armed bandit algorithms,
which we denote by ColAlg(k) for algorithm k ∈ [d].
ColAlg(1) learns the most rewarding column on average,
ColAlg(2) learns the second most rewarding column on
average conditioned on the first learned column, and so on.

The row ranking algorithm permutes columns suggested
by the column learning algorithm. It consists of multiple
instances of full-information algorithms. More precisely, for
each user i ∈ [K] and set of d columns J , we have algorithm
RowAlg(i, J) with d! arms, which correspond to all possible
permutations of J . The objective of RowAlg(i, J) is to learn
a permutation of J with the highest reward, as measured by
(2).

LRA interacts with the environment as follows. At round
t, a random user it is revealed to LRA. Then, in the as-
cending order of k ∈ [d], ColAlg(k) suggests column
`k. If ColAlg(k) suggests one of the previously suggested
columns `1, . . . , `k−1, then `k is chosen uniformly at ran-
dom from the remaining columns. We denote the vector
of d suggested columns by Jt. Then RowAlg(it, Jt), the
row learning algorithm for user it and columns Jt, selects
permutation πt,it of Jt.

The user is recommended a permuted list πt,it(Jt) and LRA

observes the individual rewards of all recommended items.
Then we update both column and row learning algorithms.
The reward of the arm in ColAlg(k), which selects the
k-th column in Jt, is updated as follows. If the arm was
not one of the previously suggested columns, its reward is
max {Mt(it, Jt(a)) : a ∈ [k]}−max {Mt(it, Jt(a)) : a ∈
[k − 1]}. Otherwise, we update the initially suggested arm
with reward 0. Since LRA observes the individual rewards of
all recommended items, we can compute the reward of any
permutation of Jt in row it. These rewards are then used to
update RowAlg(it, Jt).

4.1. Practical Considerations

The proposed LRA algorithm only has to update/look through
(Kd+d) items for each of the d ColAlg and the i-th RowAlg
at every timestep t. This is in stark contrast to some of
the existing matrix completion algorithms which has to
reconstruct a K × L matrix (Sen et al., 2016) or calculate
second or third order tensors (Gopalan et al., 2016).

Note, that we leave the implementation of the ColAlg and
RowAlg to the users. For theoretical guarantees we use non-
stochastic algorithm Exp3 as ColAlg and WMA as RowAlg

Algorithm 1 Latent Ranker Algorithm (LRA)

1: Input: Rank d, horizon n
2: for k = 1, . . . , d do {Initialization}
3: Initialize ColAlg(k)
4: end for
5: for all i ∈ [K], J ⊂ [L] such that |J | = d do
6: Initialize RowAlg(i, J)
7: end for
8:
9: for t = 1, . . . , n do

10: User it is revealed
11: for k = 1, . . . , d do {Generate response}
12: ˆ̀

k ← Suggested item by ColAlg(k)

13: if ˆ̀
k ∈ {`1, . . . , `k−1} then

14: `k ← Random item not in {`1, . . . , `k−1}
15: else
16: `k ← ˆ̀

k

17: end if
18: end for
19: Jt ← (`1, . . . , `d)
20: πt,it ← Suggested permutation by RowAlg(it, Jt)
21: Recommend πt,it(Jt)
22: Observe Mt(it, Jt(k)) for all k ∈ [d]
23: for k = 1, . . . , d do {Update statistics}
24: if `k = ˆ̀

k then
25: Update arm `k of ColAlg(k) with reward

max {Mt(it, Jt(a)) : a ∈ [k]} −
max {Mt(it, Jt(a)) : a ∈ [k − 1]}

26: else
27: Update arm ˆ̀

k of ColAlg(k) with reward 0
28: end if
29: end for
30: for all arms π in RowAlg(it, Jt) do
31: Update arm π with reward rt(it, π(Jt)) in (2)
32: end for
33: end for

which will be explained in detail in section Section 5. For
experimental purposes, stochastic algorithms like UCB1 or
thompson sampling (Thompson, 1933), (Thompson, 1935),
(Agrawal & Goyal, 2012) can also be used to improve the
performance of LRA. This has also been explored in Radlin-
ski et al. (2008) where RBA uses UCB1 for ranking items.
Note, that thompson sampling is a Bayesian algorithm that
performs better than UCB1 in stochastic setting due to its in-
herent prior assumptions on the distribution of the feedback.

5. Analysis
We sketch the main components of the regret decomposition
here and argue that the regret should be bounded. The
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crucial idea is to decompose the regret of LRA into two parts,
where ColAlg does not suggest J∗ and the rest. The first
part can be analyzed as follows. ColAlg has a sublinear
regret, based on a similar analysis to Radlinski et al. (2008).
Therefore, our upper bound on the probability that ColAlg
suggests suboptimal columns, is bounded, and decreases
with time horizon n.

The second part is analyzed as follows. Conditioned on
Jt = J∗, the only remaining regret at time t is due to the
fact that columns Jt are not ordered optimally for user it.
Since this is a full-information problem where RowAlg is the
weighted majority algorithm (Littlestone & Warmuth, 1994),
the regret due to learning to order d columns for K users
is K times that of the weighted majority algorithm with d!
arms. Hence, the regret should consists of two main parts.
The first part is the regret due to learning the d optimal hott-
topics columns with a high probability. The second part,
which is due to learning the most rewarding permutations
of the d optimal columns for all users.

A key challenge in proving the regret is to handle certain
special cases. One particular case might occur in the rank-1
setting, which is a trivial case as every user i ∈ [K] prefers
a single best item j∗ ∈ [L] and there is no ranking of items
present. Yet, if the matrix M(i, j) is 0 everywhere except
at the i, j∗ position for all i ∈ [K], then regret might scale
as O(

√
KLn). Hence, deriving a regret bound for this

setting requires more careful analysis and possibly further
assumptions on U or V .

Another challenge in this setting stems from the fact that
rows (or users) are being revealed by nature, and the learner
cannot choose them. This makes the regret decomposition
and subsequent analysis more difficult. Note, that this set-
ting is in contrast to Katariya et al. (2017), Katariya et al.
(2016), and Kveton et al. (2017) settings where the rows are
also being selected by the learner.

Note, that if this problem was solved by RBA (Radlinski
et al., 2008), the regret would be O(

√
KLn). Similarly,

the trivial approach where the optimal columns are learned
separately for each user by separate bandit algorithms will
also result in a regret of O(

√
KLn).

Finally, we use non-stochastic algorithms for ColAlg and
RowAlg because our environment is non-stationary. In par-
ticular, we assume that user preferences Ut, and thus re-
wards, can change over time t. In addition, the rewards
in ColAlg(k) are non-stationary due to chosen columns at
higher positions 1, . . . , k − 1.

6. Experiments
In this section, we compare LRA to several bandit algorithms
in three experiments. The first two experiments are on syn-

thetic dataset where all modeling assumptions hold. The
third experiment is on a real-life dataset where we evaluate
LRA when our modeling assumptions fail. In all our exper-
iments user come uniform randomly over all time [n]. All
results are averaged over 10 independent random runs.

6.1. Evaluated Algorithms

Independent User Model Algorithms: In this approach,
each user has a separate version of base-bandit algorithm
running independent of each other. As base-bandit algo-
rithms we choose two variants of the ranked bandit algo-
rithm (RBA) of Radlinski et al. (2008). The two variants of
RBA uses two types of column learning algorithms, UCB1
(Auer et al., 2002a) and Exp3 (Auer et al., 2002b), abbre-
viated as RBA− UCB1 and RBA− EXP3 respectively. Exp3
is a randomized algorithm suited for the adversarial setting
while UCB1 is the standard algorithm used in the stochastic
feedback setting. For RBA− UCB1, we choose the confi-
dence interval at round t as ci,j(t) =

√
2 log t
Ni,j(t) for user i

and item j. Here, Ni,j(t) denotes the number of times the
j-th item has been observed by the i-th user base-bandit al-
gorithm till round t. Note, that running independent vanilla
UCB1 and Exp3 for every user is not feasible. This is be-
cause the vanilla versions are guaranteed to find a single
best item for each user at rank 1, while RBA− UCB1 and
RBA− EXP3 will find a diverse list of d best items for each
user.

Matrix Completion Algorithms: In the matrix comple-
tion approach, the algorithms try to reconstruct the user-
item preference matrix M from its noisy realization. We
implement the widely used non-negative matrix factoriza-
tion method to reconstruct partially observed noisy matri-
ces. We term the corresponding algorithm as NMF Bandit
(NMF− Ban). The objective function of NMF− Ban is:-

minimize
∥∥∥M̂ − Û V̂ ᵀ

∥∥∥2

F
with respect to Û , V̂

subject to constraints Û , V̂ ≥ 0

where, M̂ is the observed noisy matrix of size K×L which
has a low rank d, Û ∈ [0, 1]K×d and V̂ ∈ [0, 1]L×d are
estimated non negative matrices which generates M̂ such
that M̂ ≈ Û V̂ ᵀ. This objective function is minimized by
alternating minimization of Û and V̂ till the loss is very
low. NMF− Ban knows the rank of the matrix M̂ . This
algorithm is explore-exploit in implementation whereby it
first explores for cd(K + L) rounds by choosing items for
incoming users uniform randomly, where c is an exploration
parameter which can be tuned depending on the noise in
the system. We set c = 10 in all experiments. Then it re-
constructs M̂ using the objective function mentioned above.
Then over the reconstructed matrix it behaves greedily and
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suggest d best items based on decreasing order of their pref-
erences for the it-th user at every timestep t.

Personalized Ranking Algorithms: In this approach, we
evaluate our proposed algorithm latent ranking bandit (LRA)
by using two different types of column learning algo-
rithms, Exp3, and UCB1. We term them as LRA− EXP3,
and LRA− UCB1 respectively. The row ranking components
for all of these algorithms is the weighted majority algo-
rithm (WMA) from Littlestone & Warmuth (1994) which is
suited for the full information setting. Note that we only
show theoretical guarantees for LRA− EXP3. We initial-
ize the k-th column EXP3 with the column exploration

parameter γk =
√

L logL
n as stated in Auer et al. (2002b).

Similarly, for LRA− UCB1 we use a confidence interval of
ck,j(t) =

√
2 log t
Nk,j(t) for the k-th column MAB and j-th

item. Here, Nk,j(t) denotes the number of times the j-th
item has been observed by the k-th column UCB1 algorithm
till timestep t.

6.2. Synthetic Experiment 1

This experiment is conducted to test the performance of
LRA over small number of users and items. This simulated
testbed consist of 500 users, 50 items, and rank(M) = 2.
The vectors spanning U and V , generating the user-item
preference matrix M , are shown Figure 1(a). The users
are evenly distributed into a 50 : 50 split such that 50% of
users prefer item 1 and 50% users prefer item 2. The item
hott-topics are V (1, :) = (0, 1) and V (2, :) = (1, 0) while
remaining 70% of items has feature V (j′, :) = (0.45, 0.55)
and the rest have V (j, :) = (0.55, 0.45). We create the
user feature matrix U similarly having a 50 : 50 split
such that U(1, :) = (0, 1), U(2, :) = (0.2, 0.8) and the
remaining 70% users having U(i, :) = (0, 0.8) and 30%
users having U(i′, :) = (0.7, 0). At every timestep t the
resulting matrix Mt = UDtV

ᵀ is generated where Dt is a
randomly-generated diagonal matrix. So, Mt is such that al-
gorithms that quickly find the easily identifiable hott-topics
perform very well. From Figure 1(b) we can clearly see
that LRA− EXP3, and LRA− UCB1 outperforms all the other
algorithms. Their regret curve flattens, indicating that they
have learned the best items for each user. Independent
user model algorithms RBA− UCB1 and RBA− EXP3 per-
form poorly as the number of items per user is too large
and the independent algorithms are not sharing informa-
tion between them. NMF− Ban performs better than the
independent user model algorithms but is outperformed by
LRA− EXP3, and LRA− UCB1.

6.3. Synthetic Experiment 2

We conduct the second experiment on a larger simulated
database of 1500 users, 100 items and rank(M) = 3. The

(a) Expt-1: 500 Users, 50 items, Rank 2, User and Item
vectors

(b) Expt-1: Cumulative regret of different algorithms

Figure 1. A comparison of the cumulative regret incurred by the
various bandit algorithms.

(a) Expt-2: 1500 Users, 100 items, Rank 3, User and Item
vectors

(b) Expt-2: Cumulative regret of different algorithms

Figure 2. A comparison of the cumulative regret incurred by the
various bandit algorithms.

vectors spanning U and V , generating the user-item prefer-
ence matrix M is shown Figure 2(a). The users are divided
into an unequal distribution of 60 : 30 : 10 split such that
60% of the users prefer item item 1, 30% prefer item 2
and 10% prefer item 3. Hence, in this testbed it is difficult
to learn item 3 as it is observed for less number of users.
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Here, hott-topics are V (1, :) = (1, 0, 0), V (2, :) = (0, 1, 0)
and V (3, :) = (0, 0, 1). The remaining 60% of items have
feature V (j, :) = (0.5, 0.25, 0.25), 30% have V (j′, :) =
(0.25, 0.5, 0.25) and rest have V (j

′′
, :) = (0.25, 0.25, 0.5).

We create the user feature matrix U similarly having a
60 : 30 : 10 split and the vectors spanning U are only
of the type that spans the simplex, i.e U(i, :) = (1, 0, 0),
U(i′, :) = (1, 0, 0) and U(i

′′
, :) = (1, 0, 0). Again, at every

timestep t the resulting matrix Mt = UDtV
ᵀ is generated

where Dt is a randomly-generated diagonal matrix. So, Mt

is such that algorithms that quickly find the easily identifi-
able hott-topics perform very well. From Figure 2(b) we can
see that LRA− EXP3, and LRA− UCB1 again outperform all
the other algorithms. Their regret curve flattens much before
all the other algorithms indicating that they have learned the
best items for each user. The matrix completion algorithm
NMF− Ban again fails to get a reasonable approximation of
M and performs poorly. Also, we see that both the indepen-
dent user model algorithms RBA− UCB1 and RBA− EXP3

perform poorly as the number of users and the number of
items per user is too large and the independent base-bandits
(RBA) are not sharing information between themselves. In
both the synthetic datasets, we see that stochastic column
learning algorithm (UCB1) is outperforming adversarial col-
umn learning algorithm (Exp3) as the user preference over
the best item is not changing over time. This has also been
observed by Radlinski et al. (2008).

6.4. Real World Experiment 3

We conduct the third experiment to test the performance of
LRA when our modelling assumptions are violated. We use
the Jester dataset (Goldberg et al., 2001) which consist of
over 4.1 million continuous ratings of 100 jokes from 73,421
users collected over 5 years. In this dataset there are many
users who rated all jokes and we work with these users.
Hence the user-item preference matrix is fully observed and
we will not have to complete it using matrix completion
techniques. Hence, this approach is very real world. We
sample randomly 2000 users (who have rated all jokes) from
this dataset and use singular value decomposition (SVD)
to obtain a rank 4 approximation of this user-joke rating
matrix M . In the resultant matrix M , most of the users
belong to the four classes preferring jokes 99, 93, 96 and
28, while a very small percentage of users prefer some other
jokes. Note, that this condition results from the fact that
this real-life dataset does not have the hott-topics structure.
The rank 4 approximation of M of is shown in Figure 3(a),
where we can clearly see the red stripes spanning the matrix
indicating the low-rank structure of M . Furthermore, in
this experiment we assume that the noise is independent
Bernoulli over the entries of M and hence this experiment
deviates from our modeling assumptions. From 3(b) again
we see that LRA− EXP3, and LRA− UCB1 outperform other

algorithms. Although the cumulative regret of NMF− Ban

is less than our proposed approaches, note that it does not
converge and find the d best items.

(a) Expt-3: 2000 Users, 100 items, Rank 1 approximation
of Jester Dataset

(b) Expt-3: Cumulative regret of different algorithms

Figure 3. A comparison of the cumulative regret in Jester Dataset

7. Related Work
Our work lies at the intersection of several existing areas of
research, which we survey below.

Bandits for Latent Mixtures: The existing algorithms in
latent bandit literature can be broadly classified into two
groups: the online matrix completion algorithms and the
independent user model algorithms. The online matrix com-
pletion algorithms try to reconstruct the user-item prefer-
ence matrix M from a noisy realization combining different
approaches of online learning algorithms and matrix factor-
ization algorithms. The NMF-Bandit algorithm in Sen et al.
(2016) is an online matrix completion algorithm which is
an ε-greedy algorithm that tries to reconstruct the matrix
M through non-negative matrix factorization. Note, that
this approach requires that all the matrices satisfy a weak
statistical Restricted Isometric Property, which is not always
feasible in real life applications. Another approach is that of
Gopalan et al. (2016) where the authors come up with an al-
gorithm which uses the Robust Tensor Power (RTP) method
of Anandkumar et al. (2014) to reconstruct the matrix M ,
and then use the OFUL procedure of Abbasi-Yadkori et al.
(2011) to behave greedily over the reconstructed matrix. But
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the RTP is a costly operation because the learner needs to
construct a matrix of order L×L and L×L×L to calculate
the second and third order tensors for the reconstruction. A
more simpler setting has also been studied in Maillard &
Mannor (2014) where all the users tend to come from only
one class and hence this approach is also not quite realistic.

The second type of algorithms are the independent user
model algorithms where for each user i ∈ [K] a separate
instance of a base-bandit algorithm is implemented to find
the best item for the user. These base -bandits run indepen-
dent of each other without sharing any information. These
base-bandits can be any randomized algorithms suited for
the adversarial setting or stochastic algorithms which tend
to perform better under stochastic feedback assumptions.

Ranked Bandits: Bandits have been used to rank items
for online recommendations where the goal is is to present
a list of d items out of L that maximizes the satisfaction
of the user. A popular approach is to model each of the d
rank positions as a Multi Armed Bandit (MAB) problem
and use a base-bandit algorithm to solve it. This was first
proposed in Radlinski et al. (2008) which showed that query
abandonment by user can also be successfully used to learn
rankings. Later works on ranking such as Slivkins et al.
(2010) and Slivkins et al. (2013) uses additional assumptions
to handle exponentially large number of items such that
items and user models lie within a metric space and satisfy
Lipschitz condition.

Ranking in Click Models: Several algorithms have been
proposed to solve the ranking problem in specific click mod-
els. Popular click models that have been studied extensively
are Document Click Model (DCM), Position Based Click
Model (PBM) and Cascade Click Model (CBM). For a sur-
vey of existing click models a reader may look into Chuklin
et al. (2015). While Katariya et al. (2017), Katariya et al.
(2016) works in PBM, Zoghi et al. (2017) works in both
PBM and CBM. Finally, Kveton et al. (2017) can be viewed
as a generalization of rank-1 bandits of Katariya et al. (2016)
to a higher rank. Note, that the theoretical guarantees of
these algorithms does not hold beyond the specific click
models.

Online Sub-modular maximization: Maximization of
submodular functions has wide applications in machine
learning, artificial intelligence and in recommender systems
(Nemhauser et al., 1978), (Krause & Golovin, 2014). Intu-
itively, a submodular function states that after performing a
set A of actions, the marginal gain of another action e does
not increase the gain for performing other actions in B \A.
Online submodular function maximization has been studied
in Streeter & Golovin (2009) where the authors propose a
general algorithm whereas Radlinski et al. (2008) can be
considered as special case of it when the payoff is only be-
tween {0, 1}. Also, in the contextual feature based setup

online submodular maximization has been studied by Yue
& Guestrin (2011). An interesting property of submodular
function is that a greedy algorithm using it is guaranteed to
perform atleast

(
1− 1

e

)
of the optimal algorithm and this

factor
(
1− 1

e

)
is not improvable by any polynomial time

algorithm (Nemhauser et al., 1978). Note that the max func-
tion is a submodular function which satisfies the condition
of monotonicity and submodularity.

8. Conclusions
In this paper, we studied the problem of suggesting a diverse
list of items to users, with the best permutation of those
items for individual users. The best permutation of items for
an user contains its preference for the items in descending
order with the best item at rank position 1. We formulated
the above problem as a personalized ranking problem and
proposed the latent ranker algorithm for this setting. We also
evaluated our proposed algorithm on several simulated and
real-life datasets and show that it outperforms the existing
state-of-the-art algorithms.

There are several directions where this work can be ex-
tended. Instead of just providing an informal guarantee that
the regret should be bounded, we intend to rigorously de-
rive the regret of LRA (possibly a sub-linear regret). Note,
that observing d items at every timestep is helping LRA to
learn more efficiently. Hence, while keeping the hott-topics
assumption it is worthwhile to study the personalized rank-
ing setting when only 1 item is allowed to be suggested at
every timestep t. Another interesting direction is to look at
structures where there are hott-topics assumption on user
matrix as well as item matrix or maybe even at structures
beyond hott-topics.
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