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abstract

We study the problem of adaptive data collection in Reinforcement Learn-
ing (RL). The most challenging aspect of RL is to balance exploration-
exploitation - the trade-off between finding the most rewarding unexplored
action as opposed to sticking with the current best action. In this thesis, we
study how to adaptively collect diverse and informative data that balance
exploration-exploitation so as to reduce some metric of error. We study
how to adaptively collect data to reduce the evaluation error of a policy
before its deployment, and how to reduce the prediction error of identify-
ing the best action(s) across all tasks in a multi-task learning setting. In
the process, we show how to use data collection by a demonstrator to train
a Decision Transformer to learn the optimal algorithm in a multi-task set-
ting. Finally, we extend this idea of adaptive data collection for preference
elicitation in Large Language models (LLMs) to align LLMs with human
feedback and design prompts for few-shot learning in LLMs.
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Part I

Introduction
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1 introduction and overview

Reinforcement Learning (RL) (Sutton, 1988; Puterman, 2014) has shown
great promise in building pro-active agents (Xu et al., 2024a), aligning
Large Language Model (LLM) with human feedback (Brown et al., 2020;
Rafailov et al., 2023; Liu et al., 2024), autonomous driving (Kiran et al.,
2021), robotics (Ibarz et al., 2021; Agarwal et al., 2022), recommender
systems (Bottou et al., 2013), and a host of other areas (Fischer, 2018; Yu
et al., 2019; Hambly et al., 2021). With the increase in computational power
and data availability, researchers have increasingly turned to RL to create
agents that can navigate sophisticated challenges through environmental
interaction and maximize cumulative rewards in specific tasks.

The RL framework is typically modeled as a Markov Decision Process
(MDP) (Puterman, 2014). The MDP is also referred to as an environment
and consists of states, actions, transition dynamics regulating movement
between states, and reward functions. At every round of interaction,
the agent takes action, moves to the next state following the transition
dynamics, and observes the reward. The final goal of the agent is to
maximize the cumulative reward at the end of some number of interactions.
Therefore, the agent needs to plan the sequence of actions to take and states
to visit to maximize the cumulative reward. This is called the policy of
the agent. We call the value of such a policy as the expected cumulative
reward that the policy can achieve by the end of all interactions. We also
define the regret of a policy as the difference between the total expected
reward an optimal policy with knowledge of the underlying environment
can achieve against the deployed policy. This MDP can model many
real-world applications such as recommending items to users (Li et al.,
2016) or evaluating such a recommendation system before its deployment
(Mukherjee et al., 2022a), training agents for multi-task learning (Du et al.,
2023), or aligning LLM with human feedback (Rafailov et al., 2023). In
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this thesis, we will be studying several such applications.
The traditional RL approach requires large sample sizes of interactions

and long training periods and may not always generalize well to new
environments (Zanette and Brunskill, 2019; Agarwal et al., 2019; Craw-
shaw, 2020). Moreover, it is not always clear apriori what the best actions
to take in a task that will enable the agent to maximize the cumulative
reward. For example, the agent without any prior knowledge of the task
or environment may need to conduct exploration to learn the underlying
reward function and transition dynamics. However, conducting too much
exploration may lead the agent to select actions that may lead to a decrease
in overall cumulative reward. On the other hand, the agent may choose
to be myopic and not explore the environment and may get stuck with
sub-optimal actions that do not yield the highest cumulative rewards in
the long run. This is called the exploration-exploitation dilemma and is at
the heart of all RL learning problems (Sutton, 1988; Agarwal et al., 2019;
Zanette, 2021).

In this thesis, we will study this central question of how to adap-
tively collect these sequences of interactions to balance the exploration-
exploitation of the agent. These sequences of interactions are also referred
to as data. While many studies have been conducted on how to balance
the exploration-exploitation in RL (Bubeck et al., 2012; Lattimore and
Szepesvári, 2020a; Sutton and Barto, 2018; Agarwal et al., 2019; Wang et al.,
2022) only a few works have looked into this from the lens of optimal de-
sign (Jamieson and Jain, 2022; Katz-Samuels et al., 2020; Mukherjee et al.,
2023c). Optimal design studies how to collect diverse and informative
data (exploration-exploitation) to reduce some metric of error within a
pre-specified budget (Pukelsheim, 2006; Fedorov, 2010). Many optimal
designs such as A, D, T , E, G, V-designs exist in the literature that mini-
mize different metrics of error like the Mean squared error of an estimator,
or reducing the variance of an estimator, etc. This metric of error can also
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be the estimation error of the value of a policy that needs to be deployed,
the error in identifying the optimal arm(s) by a policy that is deployed
across multiple tasks, or the estimation error of a reward function before it
is used to train an LLM. Consequently, we will study how to collect diverse
and informative data within a limited budget so that the agent can efficiently
learn how good a policy is, how to better generalize across different tasks,
or how to align an LLM with human feedback. Therefore, we pose the
central question addressed in this thesis as follows:

How to adaptively collect diverse and informative data to balance
exploration-exploitation and minimize the metric of error?

Exploration in this context means discovering more diverse data and
exploitation means finding examples that minimize the metric of error.
For easier exposition to the readers, we divide the thesis into three parts,
where each part has one core theme but all of them study the same central
question raised above. In the first part, the core theme is data collection
for policy evaluation and we study how to use optimal design for data
collection for policy to reduce value estimation error of a policy in Markov
decision processes (MDPs). In policy evaluation, we are given a target
policy and asked to estimate the expected cumulative reward it will obtain
in an environment formalized as an MDP. We develop theory for optimal
design for data collection within the class of tree-structured MDPs and
linear bandits where the variances of the rewards depend on the action fea-
tures. We further extend this line of work to incorporate safety constraints
while collecting data for policy evaluation.

In the second part, the core theme is multi-task learning (MTL) and
we study optimal design and adaptive data collection for MTL. In MTL
setting the goal is to leverage the shared structure across the tasks to
perform well in each of the tasks. In this thesis, we focus on the multi-task
representation learning (MTRL) setup where the tasks share a common
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low-dimensional linear or bilinear representation. We study both linear
and bilinear MTRL settings where the goal is to find the best arm(s) within
a fixed budget. We develop a double optimal design technique that first
selects informative samples to learn the common representation across
tasks and then uses informative samples within each task to find the best
arm(s) of each task. We show theoretically that this approach leads to a
smaller probability of error than existing approaches in the case of fixed
budget setting. We further develop the MTL setting to incorporate a new
paradigm of data collection to learn an optimal algorithm directly from
the collected data without explicitly designing the learning algorithm.
This paradigm of learning is called “Learning to learn” (Lee et al., 2023;
Friedman et al., 2024). In this setting, we deploy a decision transformer to
learn the shared representation across the tasks from data selected by a
sub-optimal algorithm. Then we show that the decision transformer can
actually leverage this shared representation to learn an optimal algorithm
and thereby outperform the demonstrator in various tasks.

In the final part of the thesis, the core theme is LLM alignment and we
use the optimal design to collect data for alignment and prompt selection
for LLMs. We use the D-optimal design to select examples to learn the
human preference model when the underlying ranking feedback follows
a Plackett-Luce model. We show empirically that selecting samples us-
ing our method leads to minimizing the ranking error in existing LLM
datasets like Nectar and Anthropic harmless-helpful dataset. We then
use G-optimal design to adaptively design prompts for few-shot learning
with LLMs. We experiment with many different tasks in small, medium-
sized, and large language models; and show that our proposed algorithms
outperform other methods for choosing few-shot examples in the LLM
prompt at inference time. In the following section, we briefly discuss each
of the chapters covered in the three parts mentioned above.
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1.1 Part 2: Adaptive Data Collection for Policy
Evaluation in MDPs and Heteroscedastic
Linear Bandits

This part of the thesis studies the use of adaptive data collection for policy
evaluation in Markov decision processes (MDPs). In policy evaluation,
we are given a target policy and asked to estimate the expected cumulative
reward it will obtain in an environment formalized as an MDP. Previous
works in this setting (Carpentier and Munos, 2011, 2012; Carpentier et al.,
2015) mainly focused on K-armed stochastic bandits. We extend this line
of work in three directions: 1) Tabular MDPs, 2) Heteroscedastic linear
bandits, and 3) Tabular MDPs under safety constraints.

Note that we assume that the learning algorithm (agent) does not have
access to the underlying problem parameters, including the mean and the
variance of the rewards. We call such an algorithm agnostic algorithm. In
contrast, we call an algorithm that knows the reward variances (but not
the reward means) as oracle algorithm. We define the loss of an algorithm
as the estimation error of the value of the policy. Finally, we define regret
as the difference between the loss of the agnostic algorithm against the
oracle algorithm.

In this setting, one simple solution is to run the target policy in the
environment and estimate its value. This is called the on-policy method.
However, this is not the optimal methodology because of the noisy rewards.
The previous works (Carpentier and Munos, 2011, 2012; Carpentier et al.,
2015) have shown that running such on-policy method will result in a
regret of Õ(n−1) where n is the total budget of actions that can be tried
and Õ hides logarithmic factors.

In fact, running a different policy first to measure the uncertain actions
gathering the data, and then evaluating the target policy on them yields
a better result. This policy of gathering data is called behavior policy
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and this type of learning is called off-policy learning. However, if these
behavior policies are generated randomly to gather the dataset to evaluate
the target policy they may lead to a lot of excessive sample collection and
uninformative samples in the dataset. Instead, we can adaptively select
these behavior policies using Active Learning (AL) (Settles, 2009; Balcan
et al., 2009) to gather the dataset to maximize the accuracy of the value
estimate of the target policy using a small number of samples. We briefly
discuss the key contributions of this part in the following sections.

Chapter 2: Adaptive Data Collection for Policy Evaluation
in Tabular MDP (ReVar )

In this chapter, we develop the theory for optimal data collection for policy
evaluation within the class of tree-structured MDPs. Note that we are given
a target policy and we want to correctly estimate its value (the expected
cumulative reward) in an environment where the rewards for each state-
action pair can be noisy. Let the learner has n samples for evaluation. We
also know that in this setting running an on-policy algorithm will result
in a regret of Õ(n−1). Therefore the key question we ask in this setting is
that

Can we design an adaptive algorithm for tabular MDP to collect data for
policy evaluation that adapts to the variance of each action, and its regret

decreases at a rate faster than Õ(n−1)?

We start by first deriving an oracle data collection strategy that uses
knowledge of the variance of the reward distributions. We then introduce
the Reduced Variance Sampling (ReVar ) algorithm that approximates
the oracle strategy when the reward variances are unknown a priori and
bound its sub-optimality compared to the oracle strategy. We show that
the regret in tree-structured MDP decreases at a rate of Õ(n−3/2) which is
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achieved through carefully balancing informativeness and diversity of the
collected samples by selecting examples with high variance in estimation.
Finally, we empirically validate that ReVar leads to policy evaluation with
mean squared error comparable to the oracle strategy and significantly
lower than simply running the target policy.

Chapter 3: Optimal Design for Data Collection for Policy
Evaluation in Linear Heteroscedastic Bandits (SPEED)

In this chapter, we study the problem of optimal data collection for policy
evaluation in linear heteroscedastic bandits. Recall that in policy eval-
uation, we are given a target policy and asked to estimate the expected
reward it will obtain when executed in a multi-armed bandit environment.
Our work is the first work that focuses on such an optimal data collection
strategy for policy evaluation involving heteroscedastic reward noise in the
linear bandit setting. Let the actions be represented by d-dimensional em-
beddings, and the learner has n samples for evaluation. The key question
we ask in this setting is that

Can we design an adaptive algorithm for heteroscedastic linear bandits to
collect data for policy evaluation that adapts to the variance of each action,

and its regret decreases at a rate faster than Õ(d2n−1)?

We first formulate an optimal design for weighted least squares esti-
mates in the heteroscedastic linear bandit setting with the knowledge of
noise variances. This design minimizes the mean squared error (MSE) of
the estimated value of the target policy and is termed the oracle design.
Since the noise variance is typically unknown, we then introduce a novel
algorithm, SPEED (Structured Policy Evaluation Experimental Design),
that tracks the oracle design and derive its regret with respect to the oracle
design. We show that regret scales as Õ(d3n−3/2) and prove a lower bound
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of Ω(d2n−3/2). Finally, we evaluate SPEED on a set of policy evaluation
tasks and demonstrate that it achieves MSE comparable to an optimal
oracle and much lower than simply running the target policy.

Chapter 4: Adaptive Data Collection for Policy Evaluation
Under Safety Constraints in Tabular MDP (SaVeR)

In this chapter, we study safe data collection for the purpose of policy eval-
uation in tabular Markov decision processes (MDPs). Again recall that
in policy evaluation, we are given a target policy and asked to estimate
the expected cumulative reward it will obtain. Policy evaluation requires
data and we are interested in the question of what behavior policy should
collect the data for the most accurate evaluation of the target policy. While
prior work has considered behavior policy selection, in this paper, we
additionally consider a safety constraint on the behavior policy. Namely,
we assume there exists a known default policy that incurs a particular
expected cost when run and we enforce that the cumulative cost of all
behavior policies ran is better than a constant factor of the cost that would
be incurred had we always run the default policy. Assume that we have n
samples. Then we ask two key questions in this setting:

1) Is there a class of MDPs where it is possible to incur a regret
that degrades at a faster rate than Õ(n−1)? while satisfying safety
constraints?

2) If the answer is yes to (1), can we design an adaptive algorithm (for this
class of MDPs) to collect data for policy evaluation that does not violate
the safety constraints (in expectation), and its regret degrades at a faster
rate than Õ(n−1)?

We first show that there exists a class of intractable MDPs where no
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safe oracle algorithm with knowledge about problem parameters can
efficiently collect data and satisfy the safety constraints. We then define
the tractability condition for an MDP such that a safe oracle algorithm
can efficiently collect data and using that we prove the first lower bound
for this setting. We then introduce an algorithm SaVeR for this problem
that approximates the safe oracle algorithm and bound the finite-sample
mean squared error of the algorithm while ensuring it satisfies the safety
constraint. Finally, we show in simulations that SaVeR produces low MSE
policy evaluation while satisfying the safety constraint.

1.2 Part 3: Adaptive Data Collection in
Multi-task Learning

In this part, we study Multi-task learning (MTL) for linear, bilinear, and
other structured bandit settings. As discussed before, the traditional RL
approach may not always generalize well to new environments (Zanette
and Brunskill, 2019; Agarwal et al., 2019; Crawshaw, 2020). To address
these challenges, researchers have focused on multi-task learning which
allows knowledge to be shared across different tasks, leading to improved
learning efficiency, enhanced performance, and better generalization capa-
bilities (Bengio et al., 1990; Schaul and Schmidhuber, 2010; Tripuraneni
et al., 2021; Du et al., 2023; Mukherjee et al., 2023b). In MTL multiple tasks
are simultaneously learned by a shared model. This type of approach offers
advantages such as improved data efficiency, reduced overfitting through
shared representations, and fast learning by leveraging side information
that is shared across the tasks (Crawshaw, 2020). In the first chapter, we
exclusively focus on Multi-task representation learning (MTRL) in pure
exploration setting (Audibert et al., 2009, 2010). Previous works in the
MTRL setting have exclusively focused on regret minimization whereas
we focus on identifying the best set of the arm(s) for each of the tasks
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within a fixed budget (fixed budget setting).
In the next chapter, we introduce a paradigm of learning for the MTL

setting called “Learning to learn". In all of the previous MTL works (Tripu-
raneni et al., 2020, 2021; Yang and Tan, 2021; Mukherjee et al., 2024f) the
key approach is to first formulate the underlying environment (say linear,
bilinear, or MDP), then derive the optimal or near-optimal algorithm with
the knowledge of the underlying structure of the problem. Note that the
learning agent knows the structure shared across the tasks but does not
know the reward means. In this chapter, we study how we can learn the
underlying shared structure from demonstrations, and in the process learn
an optimal algorithm as well. We briefly discuss the key contributions of
this part in the following sections.

Chapter 5: Multi-task Representation Learning for Bilinear
Bandits for Fixed Confidence Setting (GOBLIN)

In this chapter, we study multi-task representation learning for the problem
of pure exploration in bilinear bandits. In bilinear bandits, an action takes
the form of a pair of arms from two different entity types and the reward
is a bilinear function of the known feature vectors of the arms. In the multi-
task bilinear bandit problem, we aim to find optimal actions for multiple tasks
that share a common low-dimensional linear representation. The objective
is to leverage this characteristic to expedite the process of identifying the
best pair of arms for all tasks. gFrom the works of Jun et al. (2019); Lu et al.
(2021); Kang et al. (2022) we know that the effective dimension is actually
(d1 + d2)r, where d1, d2 are the left and right ambient dimensions and r
is the rank. Similarly, for the multi-task representation learning givenM
tasks, the effective dimension should scale with the learned latent features
(k1 + k2)r where k1, and k2 are the left and right latent dimensions. Let ∆
be the minimum reward gap. Hence we ask the following question:
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Can we design an algorithm for multi-task pure exploration bilinear bandit
problem that can learn the latent features and has sample complexity that
scales as Õ(M(k1 + k2)r/∆

2)?

We propose the algorithm GOBLIN that uses an experimental design
approach to optimize sample allocations for learning the global represen-
tation as well as minimize the number of samples needed to identify the
optimal pair of arms in individual tasks. To the best of our knowledge, this
is the first study to give sample complexity analysis for pure exploration
in bilinear bandits with shared representation. Our results demonstrate
that by learning the shared representation across tasks, we achieve signifi-
cantly improved sample complexity compared to the traditional approach
of solving tasks independently.

Chapter 6: Pretraining Decision Transformers with Reward
Prediction for In-Context Structured Bandit Learning
(PreDeToR)

In this chapter, we study the multi-task structured bandit problem where
the goal is to learn a near-optimal algorithm that minimizes cumulative
regret. The tasks share a common structure and the algorithm exploits
the shared structure to minimize the cumulative regret for an unseen but
related test task. We use a transformer as a decision-making algorithm
to learn this shared structure so as to generalize to the test task. The
prior work of pretrained decision transformers like DPT (Lee et al., 2023)
requires access to the optimal action during training which may be hard
in several scenarios. With this past work in mind, the goal of this chapter
is to answer the question:
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Can we learn an in-context bandit learning algorithm in an MTL setting
that obtains lower regret than the algorithm used to produce the training
data without knowledge of the optimal action in each training task?

We show that our learning algorithm does not need the knowledge of
optimal action per task during training but predicts a reward vector for
each of the actions using only the observed offline data from the diverse
training tasks. Finally, during inference time, it selects action using the
reward predictions employing various exploration strategies in-context
for an unseen test task. We call this new pre-training methodology as
Pre-trained Decision Transformer with Reward Estimation (PreDeToR).

We show that our model outperforms other SOTA methods like DPT,
and Algorithmic Distillation (AD) over a series of experiments on sev-
eral structured bandit problems (linear, bilinear, latent, non-linear). In-
terestingly, we show that our algorithm, without the knowledge of the
underlying problem structure, can learn a near-optimal policy in-context
by leveraging the shared structure across diverse tasks. We further extend
the field of pre-trained decision transformers by showing that they can
leverage unseen tasks with new actions and still learn the underlying latent
structure to derive a near-optimal policy. We validate this over several ex-
periments to show that our proposed solution is very general and has wide
applications to potentially emergent online and offline strategies at test
time. Finally, we theoretically analyze the performance of our algorithm
and obtain generalization bounds in the in-context multi-task learning
setting.
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1.3 Adaptive Data Collection for Preference
Elicitation, Prompt Designing, and
Alignment in LLMs

The emergence of Large Language Models (LLMs) with their remarkable
capabilities has sparked a new direction in AI agent development (Touvron
et al., 2023; Vaswani et al., 2017). Researchers are increasingly using
LLMs as the cognitive core of AI agents, expanding their abilities through
multimodal perception and tool use (Xi et al., 2023). These LLM-based
agents can use reasoning and planning through techniques like Chain-
of-Thought (CoT) (Wei et al., 2022) and problem decomposition, while
also developing interactive environmental capabilities similar to reactive
agents through feedback-based learning and action generation. A key
advantage of LLM-based agents stems from their pre-training on vast text
corpora, which enables few-shot and zero-shot generalization. This allows
them to transfer knowledge between tasks without parameter updates,
making them highly adaptable.

As an example of a downstream task that requires fine-tuning, we state
the following example. Consider the following proactive agent which
takes input the command “Plan a vacation to Italy within my budget".
This agent then searches the knowledge base and Internet about important
tourist places to visit in Italy, ranks these places based on the budget
(reasoning), and then confirms these with the user. It can then go ahead
and book flights/cars/hotels at these places, authenticate all of these with
the user, and provide the necessary receipts. An illustrative picture is
shown in Figure 1.1.

The Large Language Models (LLMs) like BERT, GPT3, dominate the
leaderboards for many NLP tasks (Devlin et al., 2018; Yang et al., 2019;
Radford et al., 2019; Brown et al., 2020; Suzgun et al., 2022; Srivastava et al.,
2022). However, fine-tuning or aligning an LLM on a downstream task
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Figure 1.1: A Proactive Agent

requires a lot of informative and diverse labeled data. If these models are
not fine-tuned on a large number of examples their performance varies
drastically (Dodge et al., 2020). It is also expensive to gather these labeled
examples and train these LLMs (Strubell et al., 2020; Dong et al., 2022).
Hence, there is a scope for using optimal design to collect informative data
to drastically reduce the number of labeled examples needed in the finetun-
ing process or preference learning (Rafailov et al., 2024; Mukherjee et al.,
2024d) of these LLMs. Therefore, in this part of the thesis we now focus on
how to adaptively select informative examples for preference alignment
of LLMs, and adaptively designing prompts for zero-shot learning.

Chapter 7: Optimal Design for Human Preference
Elicitation

Learning of preference models from human feedback has been central to
recent advances in artificial intelligence. Motivated by the cost of obtaining
high-quality human annotations, we study efficient human preference
elicitation for learning preference models. So the goal of this chapter is to
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answer the question:

Given a budget ofn samples, can we select informative and diverse examples
to learn the preference model?

We answer affirmatively to this question. The key idea in our work
is to generalize optimal designs, a methodology for computing optimal
information-gathering policies, to questions with multiple answers, rep-
resented as lists of items. The policy is a distribution over lists and we
elicit preferences from the list proportionally to its probability. To show
the generality of our ideas, we study both absolute and ranking feedback
models on items in the list. We design efficient algorithms for both and
analyze them. Finally, we demonstrate that our algorithms are practical
by evaluating them on existing question-answering problems.

Chapter 8: Optimal Design for Adaptive In-Context Prompt
Tuning in Large Language Models

One emergent ability of large language models (LLMs) is that query-
specific examples can be included in the prompt at inference time. In this
work, we use active learning for adaptive prompt design and call it Active
In-context Prompt Design (AIPD). In this chapter, we ask the following
question:

Given a budget of n samples, can we adaptively design prompts that balance
diversity and informativeness for few-shot learning in LLMs?

We show that this is indeed possible. We design the LLM prompt by
adaptively choosing few-shot examples from a training set to optimize
performance on a test set. The training examples are initially unlabeled
and we obtain the label of the most informative ones, which maximally
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reduces uncertainty in the LLM prediction. We propose two algorithms,
GO and SAL, which differs in how the few-shot examples are chosen.
We analyze these algorithms in linear models: first GO and then use its
equivalence with SAL. We experiment with many different tasks in small,
medium-sized, and large language models; and show that GO and SAL
outperform other methods for choosing few-shot examples in the LLM
prompt at inference time.

We briefly summarize the use of adaptive data collection in various
chapters in my thesis in Table 1.1.
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Chapters Adaptive Data Col-
lection

Conference

Chapter 2, Revar: Strengthening policy
evaluation via reduced variance sampling
(Mukherjee et al., 2022a)

PE-optimal design
for Policy evaluation
in Tabular MDPs

UAI 2022

Chapter 3, Speed: Experimental de-
sign for policy evaluation in linear het-
eroscedastic bandits (Mukherjee et al.,
2024g)

PE-optimal design
for Policy evaluation
in linear bandits

AISTATS
2024

Chapter 4, SaVeR: Optimal Data Collec-
tion Strategy for Safe Policy Evaluation in
Tabular MDP (Mukherjee et al., 2024a)

PE-optimal design
Under safety con-
straints

ICML 2024

Chapter 5, Multi-task Representation
Learning for Pure Exploration in Bilinear
Bandits(Mukherjee et al., 2024f)

E and G-optimal
design for repre-
sentation learning
for fixed confidence
setting

NeurIPS
2023

Chapter 6, Pretraining Decision Trans-
formers with Reward Prediction for In-
Context Multi-task Structured Bandit
Learning (Mukherjee et al., 2024b)

Adaptive data col-
lection using Deci-
sion Transformer to
learn the optimal al-
gorithm

(In submis-
sion)

Chapter 7, Optimal Design for Human
Preference Elicitation (Mukherjee et al.,
2024c)

G-optimal Design
for Plackett-Luce
Model

NeurIPS
2024

Chapter 8, Optimal Design for Adaptive
In-Context Prompt Design in Large Lan-
guage Models (Mukherjee et al., 2024e)

G-optimal Design
for Prompt Design

Technical
Report

Table 1.1: Use of Adaptive Data Collection in my Thesis
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Part II

Adaptive Data Collection for
Policy Evaluation
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2 revar: strengthening policy evaluation via
reduced variance sampling

In reinforcement learning (RL) applications, there is often a need for policy
evaluation to determine (or estimate) the expected return (future cumula-
tive reward) of a given policy. Policy evaluation is also required in other
sequential decision-making settings outside of RL. For example, testing
an autonomous vehicle stack or ad-serving system can be seen as policy
evaluation applications. Accurate and data efficient policy evaluation is
critical for safe and trust-worthy deployment of autonomous systems.

This chapter studies data collection for low mean squared error (MSE)
policy evaluation in sequential decision-making tasks formalized as Markov
decision processes (MDPs). The objective of policy evaluation is to esti-
mate the expected return that will be obtained by running a target policy
which is a given probabilistic mapping from states to actions.

To evaluate the target policy, we require data from the environment in
which it will be deployed. Collecting data requires running a (possibly non-
stationary) behavior policy to generate state-action-reward trajectories. Our
goal is to find a behavior policy that leads to a minimum MSE evaluation
of the target policy.

The most natural choice is on-policy sampling in which we use the target
policy as the behavior policy. However, we show that in some cases this
choice is far from optimal (e.g., Figure 2.2 in our empirical analysis) as it
fails to actively take actions from which the expected return is uncertain.
Instead, an optimal behavior policy should take actions in any given state
to reduce uncertainty in the current estimate of the expected return from
that state.

This chapter makes the following main contributions. We first derive an
optimal “oracle" behavior policy for finite tree-structured MDPs assuming
oracle access to the MDP transition probabilities and variances of the reward
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distributions. Sampling trajectories according to the oracle behavior policy
minimizes the MSE of the estimator of the target policy’s expected. As a
special case (depth 1 tree MDPs), we recover the optimal behavior policy
for multi-armed bandits Carpentier et al. (2015).

We then introduce a practical algorithm, Reduced Variance Sampling
(ReVar), that adaptively learns the optimal behavior policy by observing
rewards and adjusting the policy to select actions that reduce the MSE
of the estimator. The main idea of ReVar is to plug-in upper-confidence
bounds on the reward distribution variances to approximate the oracle
behavior policy. We define a notion of policy evaluation regret compared
to the oracle behavior policy, and bound the regret of ReVar. The regret
converges rapidly to 0 as the number of sampled episodes grows, theoret-
ically guaranteeing that ReVar quickly matches the performance of the
oracle policy. Finally, we implement ReVar and show it leads to low MSE
policy evaluation in both a tree-structured and a general finite-horizon
MDP. Taken together, our contributions provide a theoretical foundation
towards optimal data collection for policy evaluation in MDPs.

The remainder of the chapter is organized as follows. In Section 2.1 we
describe the preliminaries of our setting, and in Section 2.2 we describe
the related works. In Section 2.3 we reformulate our problem in the bandit
setting and discuss related bandit works. In Section 2.4 we extend the
bandit formulation to the tree MDP. Finally we introduce the more general
Directed Acyclic Graph (DAG) MDP in Section 2.5 and discuss some
limitations of our sampling behavior. We show numerical experiments in
Section 2.6 and conclude in Section 2.7.

2.1 Background
In this section, we introduce notation, define the policy evaluation problem,
and discuss the prior literature.
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Notation

A finite-horizon Markov Decision Process, M, is the tuple (S,A,P,R,γ,d0,L),
where S is a finite set of states, A is a finite set of actions, P : S×A×S→ [0, 1]
is a state transition function, R is the reward distribution (formalized
below), γ ∈ [0, 1) is the discount factor, d0 is the starting state distri-
bution, and L is the maximum episode length. A (stationary) policy,
π : S × A → [0, 1], is a probability distribution over actions conditioned
on a given state. We assume data can only be collected through episodic
interaction: an agent begins in state S0 ∼ d0 and then at each step t takes an
action At ∼ π(·|St) and proceeds to state St+1 ∼ P(·|St,At). Interaction ter-
minates in at most L steps. Each time the agent takes action at in state st it
observes a reward Rt ∼ R(st,at). We assume R(s,a) = P(µ(s,a),σ2(s,a)),
where P denotes a parametric distribution with mean µ(s,a) and variance
σ2(s,a). The entire interaction produces a trajectory H := {(St,At,Rt)}Lt=1.
We assume d0 is known but P and the reward distributions are unknown.
We define the value of a policy as: v(π) := Eπ[

∑L
t=1 γ

t−1Rt], where Eπ is
the expectation w.r.t. trajectories sampled by following π.

We will make use of the fact that the value of a policy can be written
as: v(π) = E[vπ0 (S0)|S0 ∼ d0] where,

vπt (s) :=
∑
a

π(a|s)µ(s,a) + γ
∑
s ′

P(s ′|s,a)vπt+1(s
′)

for t ⩽ L and vπt (s) = 0 for t > L.

Policy Evaluation

We now formally define our objective. We are given a target policy, π, for
which we want to estimate v(π). To estimate v(π) we will generate a set of
K trajectories where each trajectory is generated by following some policy.
Let Hk := {skt ,akt ,Rkt (skt ,akt )}Lt=1 be the trajectory collected in episode k
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and let bk be the policy ran to produce Hk. The entire set of collected data
is given as D := {Hk,bk}Kk=1.

Once D is collected, we estimate v(π) with a certainty-equivalence esti-
mate (Sutton, 1988). Suppose D consists of n = KL state-action transitions.
We define the random variable representing the estimated future reward
from state s at time-step t as:

Yn(s, t) :=
∑
a

π(a|s)µ̂(s,a) + γ
∑
s ′

P̂(s ′|s,a)Yn(s ′, t+ 1),

where Yn(s, t+1) := 0 if t ⩾ L, µ̂(s,a) is an estimate of µ(s,a) and P̂(s ′|s,a)
is an estimate of P(s ′|s,a), both computed from D. Finally, the estimate
of v(π) is computed as Yn :=

∑
s d0(s)Yn(s, 0). In the policy evaluation

literature, the certainty-equivalence estimator is also known as the direct
method (Jiang and Li, 2016) and, in tabular settings, can be shown to be
equivalent to batch temporal-difference estimators (Sutton, 1988; Pavse
et al., 2020). Thus, it is representative of two types of policy evaluation
estimators that often give strong empirical performance (Voloshin et al.,
2019).

Our objective is to determine the sequence of behavior policies that
minimize error in estimation of v(π). Formally, we seek to minimize mean
squared error which is defined as: ED

[
(Yn − v(π))

2
]

where the expecta-
tion is over the collected data set D.

2.2 Related Work
This chapter builds upon work in the bandit literature for optimal data
collection for estimating a weighted sum of the mean reward associated
with each arm. Antos et al. (2008) study estimating the mean reward
of each arm equally well and show that the optimal solution is to pull
each arm proportional to the variance of its reward distribution. Since the
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variances are unknown a priori, they introduce an algorithm that pulls
arms in proportion to the empirical variance of each reward distribution.
Carpentier et al. (2015) extend this work by introducing a weighting on
each arm that is equivalent to the target policy action probabilities in our
work. They show that the optimal solution is then to pull each arm propor-
tional to the product of the standard deviation of the reward distribution
and the arm weighting. Instead of using the empirical standard deviations,
they introduce an upper confidence bound on the standard deviation and
use it to select actions. Our work is different from these earlier works in
that we consider more general tree-structured MDPs of which bandits are
a special case.

In RL and MDPs, exploration is widely studied with the objective of
finding the optimal policy. Prior work attempts to balance exploration
to reduce uncertainty with exploitation to converge to the optimal policy.
Common approaches are based on reducing uncertainty (Osband et al.,
2016; O’Donoghue et al., 2018) or incentivizing visitation of novel states
(Barto, 2013; Pathak et al., 2017; Burda et al., 2018). These works differ from
our work in that we focus on evaluating a fixed policy rather than finding
the optimal policy. In our problem, the trade-off becomes balancing taking
actions to reduce uncertainty with taking actions that the target policy is
likely to take.

Our work is similar in spirit to work on adaptive importance sampling
(Rubinstein and Kroese, 2013) which aims to lower the variance of Monte
Carlo estimators by adapting the data collection distribution. Adaptive im-
portance sampling was used by Hanna et al. (2017a) to lower the variance
of policy evaluation in MDPs. It has also been used to lower the variance of
policy gradient RL algorithms (Bouchard et al., 2016; Ciosek and Whiteson,
2017). AIS methods attempt to find a single optimal sampling distribution
whereas our approach attempts to reduce uncertainty in the estimated
mean rewards. In a similar spirit, Talebi and Maillard (2019) adapt the
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behavior policy to minimize error in estimating the transition model P.

2.3 Optimal Data Collection in Multi-armed
Bandits

Before we address optimal data collection for policy evaluation in MDPs,
we first revisit the problem in the bandit setting as addressed by earlier
work (Carpentier et al., 2015). The bandit setting provides intuition for
how a good data collection strategy should select actions, though it falls
short of an entire solution for MDPs.

Observe that the policy value in a bandit problem is defined as v(π) :=∑A
a=1 π(a)µ(a) where the bandit consist of a single state s and A actions

indexed as a = 1, 2, . . . ,A. In this setting, the horizon L = 1 so we return
to the same state after taking an action a at time t. Hence, we drop the
state s from our standard notation.

Suppose we have a budget ofn samples to divide between the arms and
let Tn(1), Tn(2), . . . , Tn(A) be the number of samples allocated to actions
1, 2, . . . ,A at the end of n rounds. We define the estimate:

Yn :=

A∑
a=1

π(a)

Tn(a)

Tn(a)∑
h=1

Rh(a) =

A∑
a=1

π(a)µ̂(a). (2.1)

where, Rh(a) is the hth reward received after taking action a. Note that,
once all actions where π(a) > 0 have been tried, Yn is an unbiased esti-
mator of v(π) since µ̂(a) is an unbiased estimator of µ(a). Thus, reducing
MSE requires allocating the n samples to reduce variance. As shown by
Carpentier et al. (2015), the minimal-variance allocation is given by pulling
each arm with the proportion b⋆(a) ∝ π(a)σ(a). Though this result was
previously shown, we prove it for completeness in Proposition 1 in Sec-
tion A.1. Intuitively, there is more uncertainty about the mean reward for
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actions with higher variance reward distributions. Selecting these actions
more often is needed to offset higher variance. The optimal proportion
also takes π into account as a high variance mean reward estimate for one
action can be acceptable if πwould rarely take that action.

Note that sampling according to eq. (A.1) introduces unnecessary
variance compared to deterministically selecting actions to match the
optimal proportion. Since the variances are typically unknown, a number
of works in the bandit community propose different approaches to estimate
the variances for both basic bandits and several related extensions (Antos
et al., 2008; Carpentier and Munos, 2011, 2012; Carpentier et al., 2015;
Neufeld et al., 2014). Finally, note that incorporating variance aware
techniques has been studied in multi-armed bandits (Audibert et al., 2009;
Mukherjee et al., 2018). However, these works tend to focus on regret
minimization, whereas we focus on MSE reduction. However, none of
of these works address the fundamental challenge that MDPs bring –
action selection must account for both immediate variance reduction in
the current state as well as variance reduction in future states visited. In
the next section, we begin to address this challenge by deriving minimal-
variance action proportions for tree-structured MDPs.

2.4 Optimal Data Collection in Tree MDPs
In this section, we derive the optimal action proportions for tree-structured
MDPs assuming the variances of the reward distributions are known,
introduce an algorithm that approximates the optimal allocation when
the variances are unknown, and bound the finite-sample MSE of this
algorithm. Tree MDPs are a straightforward extension of the multi-armed
bandit model to capture the fact that the optimal allocation for each action
in a given state must consider the future states that could arise from taking
that action.
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Figure 2.1: An L-depth tree with 2 actions at each state.

We first define a discrete tree MDP as follows:

Definition 2.1. (Tree MDP) An MDP is a discrete tree MDP T ⊂ M (see
Figure 2.1) if the following holds:

(1) There are L levels indexed by ℓ where ℓ = 1, 2, . . . ,L.
(2) Every state is represented as sℓi where ℓ is the level of the state s indexed

by i.
(3) The transition probabilities are such that one can only transition from

a state in level ℓ to one in level ℓ + 1 and each non-initial state can only be
reached through one other state and only one action in that state. Formally, ∀s ′,
P(s ′|s,a) ̸= 0 for only one state-action pair s,a and if s ′ is in level ℓ+ 1 then s
is in level ℓ. Finally, P(sL+1

j |sLi ,a) = 0,∀a.
(4) For simplicity, we assume that there is a single starting state s1

1 (called
the root). It is easy to extend our results to multiple starting states with a starting
state distribution, d0, by assuming that there is only one action available in the
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root that leads to each possible start state, s, with probability d0(s). The leaf states
are denoted as sLi .

(5) The interaction stops after L steps in state sLi after taking an action a and
observing the reward RL(sLi ,a).

Note that, because we assume a single initial state, s1
1, we have that es-

timating v(π) is equivalent to estimating v(s1
1). A similar Tree MDP model

has been previously used in theoretical analysis by Jiang and Li (2016); our
model is slightly more general as we consider per-step stochastic rewards
whereas Jiang and Li (2016) only consider deterministic rewards at the
end of trajectories.

Oracle Data Collection

We first consider an oracle data collection strategy which knows the vari-
ance of all reward distributions and knows the state transition probabilities.
After observing n state-action-reward tuples, the oracle computes the fol-
lowing estimate of vπ(s1

1) (or equivalently v(π)):

Yn(s
1
1) :=

A∑
a=1

π(a|s1
1)

(
1

Tn(s1
1,a)

Tn(s
1
1,a)∑

h=1

Rh(s
1
1,a) + γ

∑
sℓ+1
j

P(sℓ+1
j |s1

1,a)Yn(s2
j)

)

=

A∑
a=1

π(a|s1
1)

(̂
µ(s1

1,a) + γ
∑
sℓ+1
j

P(sℓ+1
j |s1

1,a)Yn(s2
j)

)
(2.2)

where Tn(s,a) denotes the number of times that the oracle took action a
in state s. Note that in Section 2.1 we define Yn(s, t) but now we use Yn(s)
as timestep is implicit in the layer of the tree. Also (2.2) differs from the
estimator defined in Section 2.1 as it uses the true transition probabilities,
P, instead of their empirical estimate, P̂. The MSE of Yn is:

ED[
(
Yn(s

1
1) − v

π(s1
1)
)2
] = Var(Yn(s1

1)) + bias2(Yn(s
1
1)). (2.3)
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The bias of this estimator becomes zero once all (s,a)-pairs with π(a|s) > 0
have been visited a single time, thus we focus on reducing Var(Yn(s1

1)).
Before defining the oracle data collection strategy, we first state an assump-
tion on D.

Assumption 1. The data D collected over n state-action-reward samples has at
least one observation of each state-action pair, (s,a), for which π(a|s) > 0.

Assumption 1 ensures that Yn is an unbiased estimator of v(π) so that
reducing MSE is equivalent to reducing variance. Before stating our main
result, we provide intuition with a lemma that gives the optimal proportion
for each action in a 2-depth tree.

Lemma 2.2. Let T be a 2-depth stochastic tree MDP as defined in Theorem 2.1
(see Figure A.1 in Section A.2). Let Yn(s1

1) be the estimated return of the starting
state s1

1 after observing n state-action-reward samples. Note that vπ(s1
1) is the

expectation of Yn(s1
1) under Assumption 1. Let D be the observed data over n

state-action-reward samples. Minimal MSE, ED[(Yn(s
1
1)− v

π(s1
1))

2], is obtained
by taking actions in each state in the following proportions:

b∗(a|s2
j) ∝ π(a|s2

j)σ(s
2
j ,a)

b∗(a|s1
1)∝

√√√√π2(a|s1
1)

[
σ2(s1

1,a)+γ2
∑
s2
j

P(s2
j |s

1
1,a)B2(s2

j)

]
,

where, B(s2
j) =

∑
a π(a|s

2
j)σ(s

2
j ,a).

Proof (Overview): We decompose the MSE into its variance and bias
terms and show that Yn is unbiased under Assumption 1. Next note that
the reward in the next state is conditionally independent of the reward in
the current state given the current state and action. Hence we can write
the variance in terms of the variance of the estimate in the initial state and
the variance of the estimate in the final layer. We then rewrite the total
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samples of a state-action pair i.e Tn(sℓi,a) in terms of the proportion of the
number of times the action was sampled in the state i.e b(a|sℓi). To do so,
we take into account the tree structure to derive the expected proportion
of times that action a is taken in each state in layer 2 as follows:

b(a|s2
i) =

Tn(s
2
i,a)∑

a ′ Tn(s2
i,a ′)

(a)
=

Tn(s
2
i,a)/n

P(s2
i|s

1
1,a)Tn(s1

1,a)/n

where in (a) the action a is used to transition to state s2
j from s1

1 and
so

∑
a Tn(s

2
i,a) = P(s2

i|s
1
1,a)Tn(s1

1,a). We next substitute the b(a|sℓi) for
each state-action pair into the variance expression and determine the b
values that minimize the expression subject to ∀s,

∑
a b(a|s) = 1 and

∀s,b(a|s) > 0. The full proof is given in Section A.2. ■
Note that the optimal proportion in the leaf states, b∗(a|s2

j), is the
same as in Carpentier and Munos (2011) (see Proposition 1) as terminal
states can be treated as bandits in which actions do not affect subsequent
states. The key difference is in the root state, s1

1, where the optimal action
proportion, b∗(a|s1

1) depends on the expected leaf state normalization
factor B(s2

j) where s2
j is a state sampled from P(·|s1

1,a). The normalization
factor, B(s2

i), captures the total contribution of state s2
i to the variance of Yn

and thus actions in the root state must be chosen to 1) reduce variance in
the immediate reward estimate and to 2) get to states that contribute more
to the variance of the estimate. We explore the implications of the oracle
action proportions in Theorem 2.2 with the following two examples.

Example 2.3. (Child Variance matters) Consider a 2-depth, 2-action tree
MDP T with deterministic P, i.e., P(s2

2|s
1
1, 2) = P(s2

1|s
1
1, 1) = 1 and γ = 1

(see Figure A.2 (Left) in Section A.3). Suppose the target policy is the uniform
distribution in all states so that ∀(s,a),π(a|s) = 1

2 . The reward distribution
variances are given by σ2(s1

1, 1) = 400, σ2(s1
1, 2) = 600, σ2(s2

1, 1) = 400,
σ2(s2

1, 2) = 400, σ2(s2
2, 1) = 4, and σ2(s2

2, 2) = 4. So the right sub-tree at s1
1 has

higher variance (larger B-value) than the left sub-tree. Following the sampling
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rule in Theorem 2.2 we can show that b∗(1|s1
1) > b

∗(2|s1
1) (the full calculation is

given in Section A.3). Hence the right sub-tree with higher variance will have
a higher proportion of pulls which allows the oracle to get to the high variance
s2

1. Observe that treating s1
1 as a bandit leads to choosing action 2 more often as

σ2(s1
1, 2) > σ2(s1

1, 1). However, taking action 2 leads to state s2
2 which contributes

much less to the total variance. Thus, this example highlights the need to consider
the variance of subsequent states.

Example 2.4. (Transition Model matters) Consider a 2-depth, 2-action tree
MDP T in which we have P(s2

1|s
1
1, 1) = p, P(s2

1|s
1
1, 1) = 1 − p, P(s2

3|s
1
1, 2) = p,

and P(s2
4|s

1
1, 2) = 1 − p. This example is shown in Figure A.2 (Right) in

Section A.3. Following the result of Theorem 2.2 if p≫ (1 − p) it can be shown
that the variances of the states s2

1 and s2
3 have greater importance in calculating

the optimal sampling proportions of s1
1. The calculation is shown in Section A.4.

Thus, less likely future states have less importance for computing the optimal
sampling proportion in a given state.

Having developed intuition for minimal-variance action selection in a
2-depth tree MDP, we now give our main result that extends Theorem 2.2
to an L-depth tree.

Theorem 1. Assume the underlying MDP is an L-depth tree MDP as defined in
Theorem 2.1. Let the estimated return of the starting state s1

1 after n state-action-
reward samples be defined as Yn(s1

1). Note that the vπ(s1
1) is the expectation of

Yn(s
1
1) under Assumption 1. Let D be the observed data over n state-action-

reward samples. To minimize MSE ED[(Yn(s
1
1)) − µ(Yn(s

1
1)))

2] the optimal
sampling proportions for any arbitrary state is given by:

b∗(a|sℓi)∝
√√√√π2(a|sℓi)

[
σ2(sℓi,a)+γ2

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)B2(sℓ+1

j )

]
,
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where, B(sℓj) is the normalization factor defined as follows:

B(sℓi)=
∑
a

√√√√√√π2(a|sℓi)

σ2(sℓi,a)+γ2
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)B2(sℓ+1

j )

 (2.4)

Proof (Overview): We prove Theorem 1 by induction. Theorem 2.2
proves the base case of estimating the sampling proportion for level L− 1
and L. Then, for the induction step, we assume that all the sampling
proportions from level L till some arbitrary level ℓ+ 1 can be subsequently
built up using dynamic programming starting from level L. For states in
level L to the states in level ℓ+ 1 we can compute b∗(a|sℓ+1

i ) by repeatedly
applying Theorem 2.2. Then we show that at the level ℓwe get a similar
recursive sampling proportion as stated in the theorem statement. The
proof is given in Section A.5. ■

MSE of the Oracle

In this subsection, we derive the MSE that the oracle will incur when
matching the action proportions given by Theorem 1. The oracle is run
for K episodes where each episode consist of L length trajectory of visiting
state-action pairs. So the total budget is n = KL. At the end of the K-th
episode the MSE of the oracle is estimated which is shown in Proposition 2.
Before stating the proposition we introduce additional notation which we
will use throughout the remainder of the chapter. Let

Tkt (s,a) =
k−1∑
i=0

I
{(
sit,ait

)
= (s,a)

}
,∀t, s,a (2.5)

denote the total number of times that (s,a) has been observed in D (across
all trajectories) up to time t in episode k and I{·} is the indicator function.
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Similarly let

Tkt (s,a, s ′)=
k−1∑
i=0

I
{(
sit,ait, sit+1

)
=(s,a, s ′)

}
,∀t, s,a, s ′ (2.6)

denote the number of times action a is taken in s to transition to s ′. Finally
we define the state sample Tkt (s) =

∑
a T

k
t (s,a) as the total number of

times any state is visited and an action is taken in that state.

Proposition 2. Let there be an oracle which knows the state-action variances and
transition probabilities of the L-depth tree MDP T. Let the oracle take actions
in the proportions given by Theorem 1. Let D be the observed data over n state-
action-reward samples such that n = KL. Then the oracle suffers an MSE of

L∗
n =

L∑
ℓ=1

[
B2(sℓi)

T∗,K
L (sℓi)

+ γ2
∑
a

π2(a|sℓi)
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)

B2(sℓ+1
j )

T∗,K
L (sℓ+1

j )

]
. (2.7)

where, T∗,K
L (sℓi) denotes the optimal state samples of the oracle at the end of episode

K.

The proof is given in Section A.6. From Proposition 2 we see that
the MSE of the oracle goes to 0 as the number of episodes K→∞, and
T∗,K
L (sℓi)→∞ simultaneously for all sℓi ∈ S. Observe that if for every state
s the total state counts T∗,K

L (s) = cn for some constant c > 0 then the loss
of the oracle goes to 0 at the rate O(1/n).

Reduced Variance Sampling
The oracle data collection strategy provides intuition for optimal data col-
lection for minimal-variance policy evaluation, however, it is not a practical
strategy itself as it requires σ and P to be known. We now introduce a
practical data collection algorithm – Reduced Variance Sampling (ReVar) –
that is agnostic to σ and P. Our algorithm follows the proportions given by
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Theorem 1 with the true reward variances replaced with an upper confi-
dence bound and the true transition probabilities replaced with empirical
frequencies. Formally, we define the desired proportion for action a in
state sℓi after t steps as b̂kt+1(a|s

ℓ
i) ∝√√√√π2(a|sℓi)

[
σ̂u

(2),k
t (sℓi,a)+γ2

∑
sℓ+1
j

P̂kt (s
ℓ+1
j |sℓi,a)B̂

(2),k)
t (sℓ+1

j )

]
, (2.8)

The upper confidence bound on the varianceσ2(sℓi,a), denoted by σ̂u(2),k
t−1 (sℓi,a) =

(σ̂u
k

t (s
ℓ
i,a))2, is defined as:

σ̂u
k

t (s
ℓ
i,a) := σ̂kt (sℓi,a)+2c

√
log(SAn(n+1)/δ)

Tkt (s
ℓ
i,a)

(2.9)

where, σ̂kt (sℓi,a) is the plug-in estimate of the standard deviation σ(sℓi,a),
c> 0 is a constant depending on the boundedness of the rewards to be
made explicit later, and n = KL is the total budget of samples. Using an
upper confidence bound on the reward standard deviations captures our
uncertainty about σ(sℓi,a) needed to compute the true optimal proportions.
The state transition model is estimated as:

P̂kt (s
ℓ+1
j |sℓi,a) =

Tkt (s
ℓ
i,a, sℓ+1

j )

Tkt (s
ℓ
i,a)

(2.10)

where, Tkt (sℓi,a, sℓ+1
j ) is defined in (2.6). Further in (2.8), B̂kt (sℓ+1

j ) is the
plug-in estimate of B(sℓ+1

j ). Observe that for all of these plug-in estimates
we use all the past history till time t in episode k to estimate these statistics.

Eq. (2.8) allows us to estimate the optimal proportion for all actions
in any state. To match these proportions, rather than sampling from
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b̂kt+1(a|s
ℓ
i), ReVar takes action Ikt+1 at time t+ 1 in episode k according to:

Ikt+1 = argmax
a

{
b̂kt (a|s

ℓ
i)

Tkt (s
ℓ
i,a)

}
. (2.11)

This action selection rule ensures that the ratio b̂kt (a|sℓi)/Tt(sLi ,a) ≈ 1. It
is a deterministic action selection rule and thus avoids variance due to
simply sampling from the estimated optimal proportions. Note that in the
terminal states, sLi , the sampling rule becomes

Ikt+1 = argmax
a

{
π(a|sLi )σ̂

u
k

t (s
L
i ,a)

Tkt (s
L
i ,a)

}
which matches the bandit sampling rule of Carpentier and Munos (2011,
2012).

We give pseudocode for ReVar in Algorithm 1. The algorithm proceeds
in episodes. In each episode we generate a trajectory from the starting
state s1

1 (root) to one of the terminal state sLj (leaf). At episode k and
time-step t in some arbitrary state sℓi the next action It+1 is chosen based
on (2.11). The trajectory generated is added to the dataset D. At the end of
the episode we update the model parameters, i.e. we estimate the σ̂kt (sℓi,a),
and P̂kt (sℓ+1

i |sℓj ,a) for each state-action pair. Finally, we update b̂k+1
1 (a|siℓ)

for the next episode using eq. (2.9).

Regret Analysis

We now theoretically analyze ReVar by bounding its regret with respect to
the oracle behavior policy. We analyze ReVar under the assumption that P
is known and so we are only concerned with obtaining accurate estimates
of the reward means and variances. This assumption is only made for the
regret analysis and is not a fundamental requirement of ReVar. Though
somewhat restrictive, the case of known state transitions is still interesting
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Algorithm 1 Reduced Variance Sampling (ReVar )
1: Input: Number of trajectories to collect, K.
2: Output: Dataset D.
3: Initialize D = ∅, b̂0

1(a|s
ℓ
i) uniform over all actions in each state.

4: for k ∈ 0, 1, . . . ,K do
5: Generate trajectoryHk := {St, It,R(It)}Lt=1 by selecting It according

to (2.11).
6: D← D ∪ {(Hk, b̂kL)}
7: Update model parameters and estimate b̂k+1

1 (a|sℓi) for each (sℓi,a).
8: Update b̂k+1

1 (a|sℓi) from level L to 1 following (2.8).
9: Return Dataset D to evaluate policy π.

as it arises in practice when state transitions are deterministic or we can
estimate P much easier than we can estimate the reward means.

We first define the notion of regret of an algorithm compared to the
oracle MSE L∗

n in (2.7) as follows:

Rn = Ln − L∗
n

where, n is the total budget, and Ln is the MSE at the end of episode K
following the sampling rule in (2.8). We make the following assumption
that rewards are bounded:

Assumption 2. The reward from any state-action pair has bounded range, i.e.,
Rt(s,a) ∈ [−η,η] almost surely at every time-step t for some fixed η > 0.

Note that this is a common assumption in the RL literature (Munos,
2005; Agarwal et al., 2019). The reward can also be multi-modal as long as
it is bounded. Then the regret of ReVar over a L-depth deterministic tree
is given by the following theorem.

Theorem 2. Let the total budget be n = KL and n ⩾ 4SA. Then the total
regret in a deterministic L-depth T at the end of K-th episode when taking actions



37

according to (2.8) is given by

Rn ⩽ Õ

B2
s1

1

√
log(SAn11/2)

n3/2b
∗,3/2
min (s

1
1)

+ γ

L∑
ℓ=2

max
sℓj ,a

π(a|s1
1)P(s

ℓ
j |s

1
1,a)

B2
sℓj

√
log(SAn11/2)

n3/2b
∗,3/2
min (s

ℓ
j)


where, the Õ hides other lower order terms and Bsℓi is defined in (2.4) and
b∗min(s) = mina b∗(a|s).

Note that if L = 1, |S| = 1, we recover the bandit setting and our regret
bound matches the bound in Carpentier and Munos (2011). Note that
MSE using data generated by any policy decays at a rate no faster than
O(n−1), the parametric rate. The key feature of ReVar is that it converges
to the oracle policy. This means that asymptotically, the MSE based on
ReVar will match that of the oracle. Theorem 2 shows that the regret
scales like O(n−3/2) if we have the b∗min(s) over all states s ∈ S as some
reasonable constantO(1). In contrast, suppose we sample trajectories from
a suboptimal policy, i.e., a policy that produces an MSE worse than that
of the oracle for every n. This MSE gap never diminishes, so the regret
cannot decrease at a rate faster than the oracle rate ofO(n−1). Finally, note
that the regret bound in Theorem 2 is a problem dependent bound as it
involves the parameter b∗min(s).

Proof (Overview): We decompose the proof into several steps. We
define the good event ξδ based on the state-action-reward samples D that
holds for all episode k and time t such that |σ̂kt (s,a)−σ(s,a)| ⩽ ϵ for some
ϵ > 0 with probability 1 − δ made explicit in Theorem A.6 . Now observe
that MSE of ReVar is

Ln=ED

[(
Yn(s

1
1)) − v

π(s1
1))
)2
]

=ED

[(
Yn(s

1
1))−v

π(s1
1))
)2 I{ξδ}

]
+ ED

[(
Yn(s

1
1)) − v

π(s1
1))
)2 I

{
ξCδ

}]
(2.12)
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Note that here we are considering a known transition function P.The first
term in (2.12) can be bounded using

ED

[(
Yn(s

1
1)) − v

π(s1
1))
)2 I{ξδ}

]
= Var[Yn(s1

1)]E[Tkn(s1
1)]

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T (2),k
n (s1

1,a)

]
E[Tkn(s1

1,a)]

+ γ2
∑
a

π2(a|s1
1)
∑
s2
j

P2(s2
j |s

1
1,a)

·
∑
a ′

π2(a ′|s2
j)

[
σ2(s2

j ,a ′)

T (2),k
n (s2

j ,a ′)

]
E[Tkn(s2

j ,a ′)]

where, T (2),k(s1
1,a) is a lower bound to T (2),k(s1

1,a) made explicit in Theo-
rem A.8, and T (2),k(s2

j ,a) is a lower bound to T (2),k(s1
1,a) made explicit in

Theorem A.7. We can combine these two lower bounds and give an upper
bound to MSE in a two depth T which is shown Theorem A.9. Finally,
for the L depth stochastic tree we can repeatedly apply Theorem A.9 to
bound the first term. For the second term we set the δ = n−2 and use the
boundedness assumption in Assumption 2 to get the final bound. The
proof is given in Section A.8. ■

2.5 Optimal Data Collection Beyond Trees
The tree-MDP model considered above allows us to develop a foundation
for minimal-variance data collection in decision problems where actions
at one state affect subsequent states. One limitation of this model is that,
for any non-initial state, sℓi, there is only a single state-action path that
could have been taken to reach it. In a more general finite-horizon MDP,
there could be many different paths to reach the same non-initial state.
Unfortunately, the existence of multiple paths to a state introduces cyclical
dependencies between states that complicate derivation of the minimal-
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variance data collection strategy and regret analysis. In this section, we
elucidate this difficulty by considering the class of directed acyclic graph
(DAG) MDPs.

In this section we first define a DAG G ⊂M. An illustrative figure of a
3-depth 2-action G is in Figure A.3 of Section A.9 .

Definition 2.5. (DAG MDP) A DAG MDP follows the same definition as the
tree MDP in Theorem 2.1 except P(s ′|s,a) can be non-zero for any s in layer ℓ,
s ′ in layer ℓ+ 1, and any a, i.e., one can now reach s ′ through multiple previous
state-action pairs.

Proposition 3. Let G be a 3-depth, A-action DAG defined in Theorem 2.5. The
minimal-MSE sampling proportions b∗(a|s1

1),b∗(a|s2
j) depend on themselves

such that b(a|s1
1) ∝ f(1/b(a|s1

1)) and b(a|s2
j) ∝ f(1/b(a|s2

j)) where f(·) is a
function that hides other dependencies on variances of s and its children.

The proof technique follows the approach of Theorem 2.2 but takes
into account the multiple paths leading to the same state. The possibil-
ity of multiple paths results in the cyclical dependency of the sampling
proportions in level 1 and 2. Note that in T there is a single path to each
state and this cyclical dependency does not arise. The full proof is given in
Section A.9. Because of this cyclical dependency it is difficult to estimate
the optimal sampling proportions in G. However, we can approximate the
optimal sampling proportion that ignores the multiple path problem in G

by using the tree formulation in the following way: At every time t dur-
ing a trajectory τk call the Algorithm 12 in Section A.10 to estimate B0(s)

where Bt ′(s) ∈ RL×|S| stores the expected standard deviation of the state
s at iteration t ′. After L such iteration we use the value B0(s) to estimate
b(a|s) as follows:

b∗(a|s)∝
√
π2(a|s)

[
σ2(s,a)+γ2

∑
s ′

P(s ′|s,a)B2
0(s)

]
.
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Note that for a terminal state swe have the transition probabilityP(s ′|s,a) =
0 and then the b(a|s) = π(a|s)σ(s,a). This iterative procedure follows
from the tree formulation in Theorem 1 and is necessary in G to take into
account the multiple paths to a particular state. Also observe that in Algo-
rithm 12 we use value-iteration for the episodic setting (Sutton and Barto,
2018) to estimate the the optimal sampling proportion iteratively.

2.6 Empirical Study
We next verify our theoretical findings with simulated policy evaluation
tasks in both a tree MDP and a non-tree GridWorld domain. Our ex-
periments are designed to answer the following questions: 1) can ReVar
produce policy value estimates with MSE comparable to the oracle solu-
tion? and 2) does our novel algorithm lower MSE relative to on-policy
sampling of actions? Full implementation details are given in Section A.10.

Figure 2.2: (Left) Deterministic 4-depth Tree. (Right) Stochastic grid-
world. The vertical axis gives MSE and the horizontal axis is the number
of episodes collected. Axes use a log-scale and confidence bars show one
standard error.

Experiment 1 (Tree): In this setting we have a 4-depth 2-action de-
terministic tree MDP T consisting of 15 states. Each state has a low vari-
ance arm with σ2(s, 1) = 0.01 and high target probability π(1|s) = 0.95
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and a high variance arm with σ2(s, 1) = 20.0 and low target probability
π(2|s) = 0.05. Hence, the Onpolicy sampling which samples according
to π will sample the second (high variance) arm less and suffer a high
MSE. The CB-Var policy is a bandit policy that uses an empirical Bernstein
Inequality (Maurer and Pontil, 2009) to sample an action without looking
ahead and suffers high MSE. The Oracle has access to the model and vari-
ances and performs the best. ReVar lowers MSE comparable to Onpolicy
and CB-Var and eventually matches the oracle’s MSE.

Experiment 2 (Gridworld): In this setting we have a 4× 4 stochastic
gridworld consisting of 16 grid cells. Considering the current episode time-
step as part of the state, this MDP is a DAG MDP in which there are multiple
path to a single state. There is a single starting location at the top-left corner
and a single terminal state at the bottom-right corner. Let L, R, D, U denote
the left, right, down and up actions in every state. Then in each state the
right and down actions have low variance arms with σ2(s, R) = σ2(s, D) =

0.01 and high target policy probability π(R|s) = π(D|s) = 0.45. The left
and top actions have high variance arms with σ2(s, L) = σ2(s, U) = 0.01
and low target policy probability π(L|s) = π(U|s) = 0.05. Hence, Onpolicy
which goes right and down with high probability (to reach the terminal
state) will sample the low variance arms more and suffer a high MSE.
Similar to above, CB-Var fails to look ahead when selecting actions and
thus suffers from high MSE. ReVar lowers MSE compared to Onpolicy
and CB-Var and actually matches and then reduces MSE compared to the
Oracle. We point out that the DAG structure of the Gridworld violates the
tree-structure under which Oracle and ReVar were derived. Nevertheless,
both methods lower MSE compared to Onpolicy.
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2.7 Conclusion And Future Works
This chapter has studied the question of how to take actions for minimal-
variance policy evaluation of a fixed target policy. We developed a theo-
retical foundation for data collection in policy evaluation by deriving an
oracle data collection policy for the class of finite, tree-structured MDPs.
We then introduced a practical algorithm, ReVar, that approximates the
oracle strategy by computing an upper confidence bound on the variance
of the future cumulative reward at each state and using this bound in place
of the true variances in the oracle strategy. We bound the finite-sample re-
gret (excess MSE) of our algorithm relative to the oracle strategy. We also
present an empirical study where we show that ReVar decreases the MSE
of policy evaluation relative to several baseline data collection strategies
including on-policy sampling. In the future, we would like to extend our
derivation of optimal data collection strategies and regret analysis of ReVar
to a more general class of MDPs, in particular, relaxing the tree structure
and also considering infinite-horizon MDPs. Finally, real world problems
often require function approximation to deal with large state and action
spaces. This setting raises new theoretical and implementation challenges
for ReVar where we intend to incorporate experimental design approaches
(Pukelsheim, 2006; Mason et al., 2021; Mukherjee et al., 2022b). Another
interesting direction is to incorporate structure in the reward distribution
of arms (Gupta et al., 2021, 2020b). Addressing these challenges is an
interesting direction for future work.
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3 speed: optimal design for policy evaluation in
linear heteroscedastic bandits

Bandit policy optimization has been applied in various applications such
as web marketing (Bottou et al., 2013), web search (Li et al., 2011), and
healthcare recommendations (Zhou et al., 2017). In practice, before widely
deploying a learned policy, it is often necessary to have an accurate es-
timation of its performance (i.e., expected reward). To this effect, policy
evaluation is often a critical step as it allows practitioners to determine
if a learned policy truly represents improved task performance. While
off-policy evaluation has been extensively studied as a potential solution
(Dudík et al., 2014; Li et al., 2015; Swaminathan et al., 2017; Wang et al.,
2017; Su et al., 2020; Kallus et al., 2021; Cai et al., 2021), in practice, some
amount of online evaluation is often required before widescale deploy-
ment. For instance, in web-marketing it is common to run an A/B test
with a subset of users before a potential new policy is deployed for all
users (Kohavi and Longbotham, 2017). When online policy evaluation is
required, we desire methods that provide an accurate estimate of policy
performance with a minimal amount of data collected. The default choice
for online policy evaluation is to simply run the target policy and average
the resulting rewards. However, this approach is sub-optimal when the
action space is large or different actions have reward distributions with
different variances.

In this paper, we formulate a new experimental design for allocating
action samples so as to obtain minimal mean squared error (MSE) for
policy evaluation. Specifically, we consider optimal policy evaluation
under the following linear heteroscedastic bandit model.

Let A be the set of actions and each a ∈ A is associated with a feature
vector x(a) ∈ Rd and |A| = A. The reward distribution for each action a
has mean θ⊤

∗ x(a), for some θ∗ ∈ Rd. Often the variance of the reward
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distribution is assumed to be the same for all actions, but in this paper, we
depart from this assumption. We consider the setting that the variance
is governed by a quadratic function of the form x(a)⊤Σ∗x(a), for some
symmetric positive definite matrix Σ∗ ∈ Rd×d. This assumption allows us
to capture problems in which both the mean reward and the variance may
depend on the action taken, but both vary smoothly in x(a).

We briefly contrast our studied setting with other work. In policy evalu-
ation, the common metric of algorithm performance is regret with respect
to the mean squared error of an oracle algorithm that has knowledge of
the variances of different reward distributions (i.e., knows Σ∗). There has
been an increasing focus on studying data collection for policy evaluation
in bandit settings (Zhu and Kveton, 2021, 2022a; Wan et al., 2022) and
there has been some theoretical progress (Chaudhuri et al., 2017; Fontaine
et al., 2021). Several works (Antos et al., 2008; Carpentier and Munos,
2012; Carpentier et al., 2015; Fontaine et al., 2021) have shown that in the
classical bandit setting a regret of Õ(An−3/2) is possible where n is the
total budget of actions that can be tried and Õ hides logarithmic factors.
These works have also shown that simply running the target policy to take
actions results in a slower decrease of regret at the rate of Õ(An−1). Note
that collecting data through running the target policy is called on-policy
sampling. The work of Zhu and Kveton (2022a); Wan et al. (2022) studies
the same setting under safety constraints and provides finite error bounds.
However, none of the above works provides a finite-time regret guarantee
for data collection for policy evaluation in the heteroscedastic linear bandit
setting.

The closest works to ours (Antos et al., 2008; Carpentier and Munos,
2012; Carpentier et al., 2015; Fontaine et al., 2021) either consider unstruc-
tured settings or consider the classical bandit setting. As many real-world
bandit applications have d ≪ A, a natural question arises as to how
to build an algorithm for policy evaluation in the heteroscedastic linear
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bandit setting with unknown θ∗ and Σ∗ that can leverage the structure.
Further, we want the regret of such an algorithm to decrease at a rate faster
than Õ(n−1) (the on-policy regret rate) and to scale with the dimension
d instead of actions as A ≫ d. Note that the regret should scale at least
by d2 because the learner needs to probe in d2 dimensions to estimate
Σ∗ ∈ Rd×d (Wainwright, 2019). Thus, the goal of our work is to answer
the question:

Can we design an algorithm to collect data for policy evaluation that
adapts to the variance of each action, and its regret decreases at a rate faster

than Õ(d2n−1)?

In this paper, we answer this question affirmatively. We make the
following novel contributions to the growing literature on online policy
evaluation:

1. We are the first to formulate the policy evaluation problem for
heteroscedastic linear bandit setting where the variance of each action
a ∈ A depends on a lower dimensional co-variance matrix parameter
Σ∗ ∈ Rd×d such that variance σ2(a) = x(a)⊤Σ∗x(a). This is a more gen-
eral heteroscedastic linear bandit setting than studied in Chaudhuri et al.
(2017); Kirschner and Krause (2018); Fontaine et al. (2021), and different
than the time-dependent variance model of Zhang et al. (2021); Zhao et al.
(2022).

2. We characterize the MSE in this setting and show that the optimal
design, denoted as Policy Evaluation (PE) Optimal design that minimizes
the MSE is different than A-, D-, E-, G-optimality (Pukelsheim, 2006).
We establish several key properties of this novel PE-Optimal design and
discuss how we can solve for the design efficiently.

3. Finally, we propose the agnostic algorithm, SPEED, that does not
know the underlying covariance matrixΣ∗. SPEED tracks the oracle design
and we analyze its MSE. We then bound the regret of SPEED compared to
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an oracle strategy that follows the optimal design with the knowledge of
Σ∗. We show that the regret scales asO(d

3 log(n)
n3/2 ) which is an improvement

over the regret for the stochastic non-structured bandit setting which
scales as O(A log(n)

n3/2 ) (Carpentier and Munos, 2011, 2012; Carpentier et al.,
2015; Fontaine et al., 2021). Hence, we answer positively to our main
query. We also prove the first lower bound for this setting that scales as
Ω(

d2 log(n)
n3/2 ). Finally, we conduct experiments on synthetic and real-life data

sets and show that SPEED lowers the MSE of policy evaluation compared
to baseline methods. We discuss more related works and motivations in
Section 3.2.

3.1 Preliminaries
We study the linear bandit setting where the expected reward for each
action is assumed to be a linear function (Mason et al., 2021; Jamieson
and Jain, 2022). We define [m] := [1, 2, . . . ,m]. We denote the action space
as A and |A| = A. Actions are indexed by a ∈ [A], and each action a is
associated with a feature vector x(a) ∈ Rd with dimension d≪ A. Denote
by △(A) the probability simplex over the action space A and a policy
π ∈ △(A) as a mapping π : A→ [0, 1] such that

∑
a π(a) = 1.

Data collection is performed over n rounds of action selection. Specif-
ically, at each round t ∈ [n], the selected action at yields a reward:
rt = x(at)⊤θ∗ + ηt, where θ∗ ∈ Rd is the unknown reward parameter, and
ηt is zero-mean noise with variance σ2(at) and we further assume that
ηt is κ2-subgaussian. We assume that for each action a ∈ A the variance
σ2(a) has a lower-dimensional structure such that σ2(a) = x(a)⊤Σ∗x(a)
where Σ∗ ∈ Rd×d is an unknown variance parameter. Observe that the
variance depends on the action features, which is called the heteroscedas-
tic noise model (Greene, 2002; Chaudhuri et al., 2017) which differs from
the unknown time-dependent variance model of Zhang et al. (2021); Zhao
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et al. (2022). Moreover, Fontaine et al. (2021) do not consider structure in
variances and Chaudhuri et al. (2017) only consider a special case of our
setting where Σ∗ is a rank-1 matrix. We also assume that the norms of the
features are bounded such that H2

L ⩽ ∥x(a)∥2 ⩽ H2
U for all a ∈ A. In our

heteroscedastic linear bandit setting selecting any action gives information
about θ∗ and also gives information about the noise covariance matrix Σ∗.

The value of a policy π is defined as v(π) := E[Rt] where the expec-
tation is taken over at ∼ π,Rt∼x(at)⊤θ∗ + ηt. In the policy evaluation
problem, we are given a fixed, target policy π and asked to estimate
v(π). Estimating v(π) requires a dataset of actions and their associated
rewards, D := {(a1, r1, ...,an, rn)}, which is collected by executing some
policy. We refer to the policy that collects D as the behavior policy, denoted
by b ∈ △(A). We then define the value estimate of a policy π as Yn, where
n is the sample budget. The exact nature of the value estimate for the
linear bandit setting will be made clear in Section 3.4. Our goal is to choose
a behavior policy that minimizes the mean squared error (MSE) defined
as ED[(Yn − v(π))2], where the expectation is over the collected data set D.

We now state an assumption on the boundedness on the variance
of each action a ∈ [A]. Let the singular value decomposition of Σ∗ be
UDP⊤ with orthogonal matrices U, P⊤ and D = diag (λ1, . . . , λd) where
{λi} are singular values. It follows that σ2

min ⩽ σ2(a) ⩽ σ2
max where σ2

min =

mini |λi|H2
L and σ2

max = maxi |λi|H2
U (see Theorem B.4).

Assumption 3. We assume that Σ∗ has its minimum and maximum eigenvalues
bounded such that for every action a ∈ [A] the following holds σ2

min ⩽ σ2(a) ⩽

σ2
max.

3.2 Related Work
Our work is most closely related to existing work on data collection for
policy evaluation. Perhaps the most natural choice of behavior policy is
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to simply run the target policy, i.e., on-policy data collection (Sutton and
Barto, 2018). The works in adaptive Monte Carlo for bandits (Oosterhuis
and de Rijke, 2020; Tucker and Joachims, 2022a) and MDPs (Hanna et al.,
2017b; Ciosek and Whiteson, 2017; Bouchard et al., 2016; Zhong et al.,
2022a; Corrado and Hanna, 2023) have shown how to lower the variance
of Monte Carlo estimation through the choice of behavior policy. In con-
trast to these works, we consider estimating v(π) by estimating the reward
distributions rather than using Monte Carlo estimation. Such certainty-
equivalence estimators take advantage of the setting’s structure and are
thus typically of lower variance than Monte Carlo estimators (Sutton and
Barto, 2018). The work of Wan et al. (2022) studies a different estimator
for reducing the variance of the importance sampling in constrained MDP
setting whereas we study certainty equivalence estimator. Another set of
work has studied sample allocation for stratified Monte Carlo estimators
– a problem that is formally equivalent to behavior policy selection for
policy evaluation in the bandit setting with linearly independent arms
(Antos et al., 2008; Carpentier et al., 2015). This line of work was recently
extended to tabular, tree-structured MDPs by Mukherjee et al. (2022a). In
contrast, we consider the structured linear bandit setting which incorpo-
rates generalization across actions. Li et al. (2024b) use A-optimal design
to find an optimal behavior policy for the doubly robust estimator. Their
focus is different though as they consider tabular MDPs rather than linear
heteroscedastic bandits.

Our work is closely related to optimal experimental design and active
learning literature. We formulate determining the optimal behavior policy
in the bandit setting as an optimal design problem. In contrast to prior
work, we introduce a new type of optimality that is tailored to the policy
evaluation problem. We are also, to the best of our knowledge, the first to
consider both heteroscedastic noise and weighted least squares estimators
in formulating our design. The heteroscedastic noise model and weighted
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least squares estimator have been considered by Chaudhuri et al. (2017) in
the active learning literature and in linear bandit setting by Kirschner and
Krause (2018) using information directed sampling. In contrast to these
works (and the active learning setting in general), we aim to minimize the
weighted error

∑
a∈A π(a)x(a)⊤(θ∗ − θ̂)2 whereas in the active learning

setting the goal is to minimize ∥θ∗− θ̂∥2 which results in A-optimal design
(Fontaine et al., 2021; Pukelsheim, 2006). Moreover the regret bounds in
Fontaine et al. (2021) holds for d = |A|. Riquelme et al. (2017) extends the
results of Carpentier and Munos (2011) to a different linear regression
setting than ours but under the homoscedastic noise model.

Data collection for policy evaluation is also related to the problem
of exploration for policy learning in MDPs or best-arm identification in
bandits. In those contexts, the aim of exploration is to find the optimal
policy and the exploration-exploitation trade-off describes the tension
between reducing uncertainty and focusing on known promising actions.
In bandits, the exploration-exploitation trade-off is often navigated under
the “Optimism in the Face of Uncertainty" principle using techniques such
as UCB (Lai and Robbins, 1985; Auer et al., 2002; Abbasi-Yadkori et al.,
2011) or Thompson Sampling (Thompson, 1933; Agrawal and Goyal, 2012).
In contrast to the standard exploration problem, we focus on evaluating a
fixed policy. Instead of balancing exploration and exploitation, a behavior
policy for policy evaluation should take actions that reduce uncertainty
about v(π) with emphasis on actions that have high probability under
π. Also, note that heteroscedastic bandits have been studied from the
perspective of policy improvement (Kirschner and Krause, 2018; Zhao
et al., 2022) however, in this paper we focus on optimal data collection for
policy evaluation.

We note that heteroscedasticity is also studied for the policy improve-
ment setup (Kirschner and Krause, 2018; Zhou and Gu, 2022; Zhou et al.,
2021; Zhang et al., 2021; Zhao et al., 2022). In these prior works the re-
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ward variances are time-dependent as opposed to the quadratic structure
studied in this paper. Note that policy improvement requires a different
approach than policy evaluation. These works build tight confidence sets
around the unknown model parameter θ∗ by employing weighted ridge
regression involving an estimated upper bound to the time-dependent
variances. However, in our setting, the variances of each action share the
unknown low dimensional co-variance matrix Σ∗. Hence we deviate from
these approaches and employ an alternating OLS-WLS estimation to learn
the underlying parameter Σ∗.

3.3 Optimal Design for Policy Evaluation
In this section, we first discuss why following the target policy to take
actions can lead to a poor estimation of the value of the policy. This discus-
sion motivates how a different behavior policy can produce more accurate
estimates of the target policy’s value. After this motivation, we derive an
expression for policy evaluation error in terms of the behavior sampling
proportion b ∈ △(A), target policy π, and action features x(a) ∈ Rd. We
call the minimizer of this expression the “optimal design" (Pukelsheim,
2006) as it minimizes the mean squared error for policy evaluation. We
then analyze the error incurred by an oracle that can compute and follow
the optimal behavior policy through knowledge of problem-dependent
parameters.

Motivating Example: Consider the linear bandit environment where
d = 2 and A = 100 actions. Let one action be along the x-axis, one action
along the y-axis, and 98 actions along the direction of ( 1√

2 , 1√
2). Assume

θ∗ is in the direction of x-axis (so action 1 is the optimal action). A similar
canonical linear bandit setting has been studied by Fiez et al. (2019); Katz-
Samuels et al. (2020). Consider a target policy π such that π(1) = 0.9
and it distributes 0.1 probability equally on the remaining actions. In
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this case, just running the target policy π for n rounds leads to sampling
uninformative actions for identifying θ∗. In fact, in our experiments, we
show that the estimate v(π) will be inaccurate compared to running the
optimal behavior policy (called Oracle policy; see Figure 3.1 top-left).

Now suppose we divide the budget ofn samples across the actions, and
let Tn(1), Tn(2), . . . , Tn(A) be the number of samples allocated to actions
1, 2, . . . ,A at the end of n rounds. After observing n samples, let the
weighted least square estimate (WLS) be:

θ̂n := arg min
θ

n∑
t=1

1
σ2(at)

(rt − x(at)⊤θ)2 (3.1)

where at is the action sampled at round t and σ2(at) is the variance of ac-
tionat. Also note that this is an unbiased estimator ofθ∗ (see Theorem B.6).
In a linear bandit, we can define the value estimate of a target policy as
Yn :=

∑
aw(a)⊤θ̂n, where w(a) := π(a)x(a) is the expected feature for

each action a ∈ A under the target policy, and θ̂n is an unbiased estimate
of θ∗ computed with n samples in D. As θ̂n is an unbiased estimate,
we have that ED[Yn] =

∑A
a=1 w(a)⊤θ∗ = v(π). Since we have an unbi-

ased estimator of v(π), minimizing the MSE is equivalent to minimizing
the variance, minED

[
(Yn−E[Yn])2 ]

= minED

[(∑A
a=1 w(a)⊤(θ̂n−θ∗)

)2],
where the minimization is with respect to the data distribution D, which
is determined by the behavior policy. In general, the behavior policy
that minimizes the MSE may be different from the target policy. To iden-
tify this optimal behavior policy, following the optimal design literature
(Pukelsheim, 2006; Fedorov, 2013) we define the design or information
matrix Ab,Σ∗ ∈ Rd×d w.r.t. each b ∈ ∆(A) as

Ab,Σ∗=
∑
a∈A

b(a)
( x(a)
σ(a)

)( x(a)
σ(a)

)⊤
=
∑
a∈A

b(a)x̃(a)x̃(a)⊤ (3.2)

where x̃(a) = x(a)/σ(a). Observe that our design matrix in (3.2) captures
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the information about the action features x(a), and variance σ2(a) and
weights them by the sampling proportion b(a). Then in the following
proposition, we exactly characterize the MSE with respect to the design
matrix Ab,Σ∗ , target policy π and action features x. Moving forward, we
will use the term loss interchangeably with MSE.

Proposition 1. Let θ̂n be the Weighted Least Square (WLS) estimate (3.1) of
θ∗ after observing n samples and define w(a) = π(a)x(a). Define the design
matrix as Ab,Σ∗ (see (3.2)). Then the loss is given by

ED

[( A∑
a=1

w(a)⊤(θ̂n − θ∗)
)2]

=
1
n

∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)︸ ︷︷ ︸
:=Ln(π,b,Σ∗)

.

Proof (Overview) The key idea is to show that the linear model yields
for each action a ∈ [A], Ỹn(a) = x̃n(a)⊤θ⋆ + η̃n(a) where we define

Ỹn(a) =

Tn(a)∑
i=1

Ri(a)

σ(a)
√
Tn(a)

, x̃n(a) =
√
Tn(a)x(a)
σ(a)

,

η̃n(a) =

Tn(a)∑
i=1

ηi(a)

σ(a)
√
Tn(a)

,

with Ri(a) being the reward observed for action a taken for the i-th
time, ηi(a) being the corresponding noise, and Tn(a) is the number of
samples of action a. Next, observe that using the independent noise
assumption, we have that E[η̃n(a)] = 0 and Var [η̃n(a)] = 1. Let X =(
x̃n(1)⊤, · · · , x̃n(A)⊤

)⊤ ∈ RA×d be the induced feature matrix of the pol-
icy and Y = [Ỹn(1), Ỹn(2), . . . , Ỹn(A)]⊤. The above weighted least squares
(WLS) problem has an optimal unbiased estimator θ̂n =

(
X⊤X

)−1 X⊤Y
(Fontaine et al., 2021). Substituting the definition of θ̂n yields the desired
expression of the loss as stated in the proposition. The detailed proof is
given in Chapter B. ■
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Observe that the loss in our setting depends on the inverse of the design
matrix denoted by A−1

b,Σ∗
, the target policy, as well as features of action

pairs (a,a ′) ∈ A×A. Hence, minimizing the loss is equivalent to minimiz-
ing the quantity 1/n(

∑
a,a ′ w(a)⊤A−1

b,Σ∗
w(a ′)). As this design is different

than a number of existing notions of optimality such as D-, E-, T-, or G-
optimality (Pukelsheim, 2006; Fedorov, 2013; Jamieson and Jain, 2022), we
call this the PE-Optimal design. None of these previously proposed designs
capture the objective of minimal MSE for policy evaluation. For exam-
ple, G-optimality (as studied by (Katz-Samuels et al., 2020; Mason et al.,
2021; Katz-Samuels et al., 2021; Mukherjee et al., 2023c, 2024f)) minimizes
the worst-case error of maxx(a) ED[(x(a)⊤(θ̂n − θ∗))

2] by minimizing the
quantity maxx(a) x(a)⊤A−1

b x(a) for homoscedastic noise. The E-optimal
design minimizes max∥u∥⩽1 ED[(u⊤(θ̂n − θ∗))

2] by minimizing the mini-
mum eigenvalue of the inverse of design matrix (Mukherjee et al., 2022b)
and the A-optimal design minimizes ED[(θ̂n − θ∗)

2] by minimizing the
trace of the inverse of design matrix (Fontaine et al., 2021).

We now state a few more notations for ease of exposition. Using Propo-
sition 1 we define the optimal behavior policy when the matrixΣ∗ is known
as:

b∗ := argmin
b

Ln(π, b,Σ∗), (3.3)

where the loss Ln(π, b,Σ∗) is defined in Proposition 1. We define the
optimal loss (with knowledge of Σ∗) as:

L∗
n(π, b∗,Σ∗) = min

b
Ln(π, b,Σ∗). (3.4)

Computation of the optimal design b∗
In this section, we digress a bit to discuss the computational aspect of
Ln(π, b,Σ∗). Since PE-Optimal design is a new type of design, the natural
question to ask is how to optimize this loss function w.r.t. b? We show in
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Proposition 2 that the loss Ln(π, b,Σ∗) for any arbitrary design propor-
tion b ∈ △(A) is strictly convex with respect to the proportion b. The
proposition and its proof are given in Chapter B. Next in Proposition 3
we show that the gradient of the loss function is bounded. Due to space
constraints, both propositions and their proofs are given in Chapter B and
Chapter B respectively. We first state an assumption that the minimum
eigenvalue satisfies λmin

(∑A
a=1 w(a)w(a)⊤

)
> 0, which is required for

proving Proposition 3.

Assumption 4. (Distribution of π) We assume that the set of actions a such
thatπ(a)>0, spans Rd and Rd×d.

Note that this is a realistic and not a restrictive assumption, since if the
target policy never takes an action that is needed to cover some dimension
then we can avoid identifying θ∗ in that dimension. Using Proposition 2,
3 we can effectively solve the PE-Optimal design with gradient descent
approaches (Lacoste-Julien and Jaggi, 2013; Berthet and Perchet, 2017). We
capture this convergence guarantee with the assumption of the existence
of an approximation oracle.

Assumption 5. (Approximation Oracle) We assume access to an approxima-
tion oracle. Given a convex loss function Ln(π, b,Σ∗) with minimizer b∗, the
approximation oracle returns a proportion b̂∗ = argminb Ln(π, b,Σ∗) such
that |Ln(π, b̂∗,Σ∗) − Ln(π, b∗,Σ∗)| ⩽ ϵ.

Therefore from Proposition 2, and 3 and using Assumption 4, and 5
we can get a computationally efficient solution to minb∈∆(A) Ln(π, b,Σ∗).

3.4 Loss of the Oracle
Recall from Chapter 3, that our final goal is to control the regret (excess
loss) of an agnostic algorithm that does not know Σ∗, with respect to
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an oracle that already knows Σ∗. Towards this goal, in this section, we
develop our theory for optimal data collection by considering an oracle for
the heteroscedastic linear bandit setting. Specifically, we consider an oracle
that has knowledge of Σ∗ but does not know θ∗. With this knowledge, it
can solve Equation (3.3) (Assumption 5) to determine the PE-Optimal
design, b∗, that minimizes the loss. The oracle takes actions in proportion
b∗ for n samples and then computes the WLS estimate θ̂n using Σ∗. The
following proposition then bounds the loss of the oracle after n samples.

Proposition 5. (Oracle Loss) Let the oracle sample each action a for ⌈nb∗(a)⌉
times, where b∗ is the solution to (3.3). Define λ1(V) as the maximum eigen-
value of V :=

∑
a,a ′ w(a)w(a ′)⊤. Then the loss satisfies L∗

n(π, b∗,Σ∗) ⩽

Oκ2,H2
U

1
(
dλ1(V) logn

n

)
+Oκ2,H2

U

( 1
n

)
.

Proof (Overview) Note that the oracle knows the Σ∗ and uses θ̂n in
(3.1) to estimate θ∗. We use Theorem B.5 to show that Ln(π, b∗,Σ∗) ⩽

λ1(V)d where V =
∑
a,a ′ w(a)w(a ′)⊤. The proof follows by showing

that (
∑A
a=1 w(a)⊤(θ̂n − θ∗))

2 is a sub-exponential variable. Then using
sub-exponential concentration inequality in Theorem B.2 (Chapter B) and
setting δ = O(1/n2) we can bound the expected loss with high probability.
The full proof is given in Section B.1. ■

Connection to prior work: Prior work has considered a similar oracle
for the basic stochastic bandit setting, which is a special case of our setting
with x(a) being a one-hot vector in RA. In this case, we can see that b∗ =

arg minb
∑
a
π2(a)σ2(a)
⌈b(a)n⌉ . This captures the optimal number of times the

actions should be pulled weighted by the target policy and their variance.
Solving for b∗, we obtain b∗(a) ∝ π2(a)σ2(a). This solution matches the
optimal sampling proportion given by Antos et al. (2008); Carpentier
and Munos (2011, 2012); Carpentier et al. (2015) for this special case.

1Here Oκ2,H2
U
() hides the sub-Gaussian factor κ2 and upper bound H2

U on feature
norm
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The loss in prior work decays at the rate of Õ2(An−1) whereas the loss
in Proposition 5 decreases at the rate of Õ(dn−1). Also note the loss in
Proposition 5 scales with d instead of d2 as the oracle knows the Σ∗ and
does not need to explore d2 directions to estimate Σ∗. So we obtain an
equivalence between the PE-Optimal design and the solution from prior
work in the basic bandit setting while considering a more general setting.

3.5 SPEED and Regret Analysis When Variance
is Unknown

In this section, we first introduce an agnostic algorithm called SPEED for
data collection that does not know Σ∗, and then analyze its regret. Here,
regret refers to the excess loss relative to the oracle that knows Σ∗.

Details of Algorithm SPEED

In practice, Σ∗ is unknown and so the oracle behavior policy cannot be
directly computed. Instead, we first conduct a small amount of exploration
to estimate Σ∗ and then use the estimate in place of Σ∗ in (3.2). Specifically,
we define the forced exploration phase as the first Γ rounds in which
the algorithm conducts exploration to estimate Σ∗. To ensure adequate
exploration, we first apply Principal Component Analysis (PCA) on the
feature matrix X and choose the most significant d directions (directions
having the highest variance). Then we choose one random action for
each of these d significant directions and sample these actions uniform
randomly for Γ rounds. Since the algorithm explores first and then uses
the estimate to compute the PE-Optimal design, it can be viewed as an
explore-then-commit algorithm (Rusmevichientong and Tsitsiklis, 2010;
Lattimore and Szepesvári, 2020a). As we consider a structured setting

2Here Õ hides logarithmic and problem dependent factors like σ2
min, κ2,H2

U.
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we call this algorithm Structured Policy Evaluation Experimental Design
(SPEED). After Γ =

√
n rounds, SPEED estimates the covariance matrix

Σ̂Γ as follows:

Σ̂Γ = min
S∈Rd×d

Γ∑
t=1

[
⟨x(at)x(at)⊤, S⟩−(rt−x(at)⊤θ̂Γ )2]2 (3.5)

where θ̂Γ is the ordinary least square (OLS) estimate of θ∗ using the
data from the first Γ rounds. Note that the OLS estimate is given by
θ̂Γ = (X⊤X)−1X⊤Y, where X =

(
x⊤

1 , · · · , x⊤
Γ

)⊤ and Y = [r1, . . . , rΓ ]⊤. A
covariance estimation technique similar to (3.5) has been considered for
the active regression setting though only for the case when Σ∗ has rank
1 (Chaudhuri et al., 2017). The estimate of the covariance matrix Σ̂Γ is
then fed to the oracle optimizer (Assumption 5) to compute the sampling
proportion b̂. Actions are chosen according to b̂ for the remaining n− Γ

rounds and then the WLS estimate θ̂n−Γ is computed using Σ̂Γ as the
covariance matrix parameter (Equation (3.1)). Finally, SPEED outputs
the dataset D to estimate the value of target policy π and θ̂n−Γ . Full
pseudocode is given in Algorithm 2.

Algorithm 2 Structured Policy Evaluation Experimental Design (SPEED)
1: Input: Action set A, target policy π, budget n.
2: Conduct forced exploration for Γ =

√
n rounds and estimate Σ̂Γ using

(3.5).
3: Let b̂ ∈ △(A) be the minimizer of Ln(π, b, Σ̂Γ ).
4: Pull each action a exactly Tn(a) =

⌊
b̂(a)(n− Γ)

⌋
times, and let

H(a) := {a,Ri(a)}Tn(a)i=1 be the corresponding data. Set D← ∪aH(a).
5: Construct the weighted least squares estimator θ̂n−Γ using only the

observations D from step 4.
6: Output: D and θ̂n−Γ .
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Regret Analysis of SPEED

In this section, we first state our regret definition and then analyze the
regret of the agnostic algorithm SPEED. As an agnostic algorithm, SPEED
does not know the true covariance matrix Σ∗ and must estimate the co-
variance matrix Σ̂Γ after conducting exploration for Γ rounds. We define
the loss of an algorithm after exploring for Γ rounds as the MSE of the
resulting value estimate as follows:

Ln(π, b̂, Σ̂Γ ) := ED

[( A∑
a=1

w(a)⊤(θ̂n−Γ − θ∗)
)2], (3.6)

where θ̂n−Γ is the WLS estimate of θ∗ calculated from data of last n− Γ

rounds. We now define the regret for the agnostic algorithm with the
estimated behavior policy b̂ as

Rn = Ln(π, b̂, Σ̂Γ ) − L∗
n(π, b∗,Σ∗). (3.7)

where Ln(π, b̂, Σ̂Γ ) is the loss of the agnostic algorithm and Ln(π, b∗,Σ∗)

is the oracle loss defined in (3.4). We now state the main theorem for the
regret of SPEED.

Theorem 1. (Regret of Algorithm 2, informal) Running Algorithm 2 with
budget n ⩾ Oκ2,H2

U
(
d4σ4

max log2(A/δ)

σ4
min

), the resulting regret satisfies

Rn = Oκ2,H2
U

(
d3σ2

max log(n)
σ2

minn
3/2

)
.

Discussion of Regret: Theorem 1 states that the regret of Algorithm 2
scales asOκ2,H2

U
(d3σ2

max log(n)/n3/2) where d is the dimension of θ∗. Note
that our regret bound depends on the underlying feature dimension d
instead of actions A, and scales as Õ(d3n−3/2) which gives a positive
answer to the main question of whether such a result is possible. In
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comparison to earlier work, when d3 < A, we have a tighter bound than
that given by Carpentier and Munos (2011). Furthermore, the results of
Carpentier and Munos (2011, 2012); Carpentier et al. (2015) are for the
standard multi-armed bandit setting and cannot be easily extended to
incorporate structure in the linear bandit setting. Our new bound also
improves upon the A-optimal design method given by Fontaine et al.
(2021), as their regret depends on the number of actions A and scales as
O(

A logn
n3/2 ).

Proof (Overview) of Theorem 1: We now outline the key steps for
proving Theorem 1.

Step 1 (Regret Decomposition): We first decompose the regret Rn =

Ln(π, b̂, Σ̂Γ ) − L∗
n(π, b∗,Σ∗). Recall that b∗ ∈ △(A) is the optimal design

in (3.3) and b̂ ∈ △(A) is the design followed by SPEED. However, we
cannot directly go after the loss Ln(π, b̂, Σ̂Γ ) as it does not admit a simple
structure like L∗

n(π, b∗,Σ∗). Rather we establish an upper bound on the
loss Ln(π, b̂, Σ̂Γ ), given by L ′

n−Γ (π, b̂∗, Σ̂Γ ) (defined formally in (3.9)).
Consequently, we can decompose the regret Rn into three parts as follows:

Rn
(a)

⩽ L ′
n−Γ (π, b̂, Σ̂Γ ) − L ′

n−Γ (π, b̂∗, Σ̂Γ )︸ ︷︷ ︸
Approximation error

+ L ′
n−Γ (π, b̂∗, Σ̂Γ ) − Ln(π, b∗, Σ̂Γ )︸ ︷︷ ︸

Comparing two different loss

+ Ln(π, b∗, Σ̂Γ ) − L∗
n(π, b∗,Σ∗)︸ ︷︷ ︸

Estimation error of Σ∗

. (3.8)
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where (a) follows as we show that

Ln(π, b̂, Σ̂Γ ) = E

[( A∑
a=1

w(a)⊤(θ̂n−Γ − θ∗)
)2
]

⩽ 1
n−Γ

(
1 +

2Cd2 log(A/δ)
σ2

minΓ

)∑
a,a ′

w(a)⊤A−1
b̂∗,Σ̂Γ

w(a ′)

:= L ′
n−Γ (π, b̂∗, Σ̂Γ ), (3.9)

where C > 0 is a constant. Note that the inequality above is shown in
Proposition 6 which we discuss in depth in step 2. Finally note that b̂∗ is
the empirical PE-Optimal design returned by the approximator after it is
supplied with Σ̂Γ .

Step 2 (Bounding the loss Ln(π, b̂, Σ̂Γ )): In this step we discuss how to
upper bound the agnostic lossLn(π, b̂, Σ̂Γ )withL ′

n−Γ (π, b̂∗, Σ̂Γ ) as defined
in (3.9).

We first state a concentration lemma that is key to proving this upper
bound. This lemma is novel for our proof because we estimate the under-
lying covariance matrix Σ∗ using OLS estimator for Γ rounds. We then use
the estimation Σ̂Γ in the WLS estimator. For our lemma, we first define the
variance concentration good event under Γ rounds of forced exploration
as:

ξvarδ (Γ) :=

{
∀a,
∣∣∣∣x(a)⊤(Σ̂Γ − Σ∗)x(a)

∣∣∣∣ < 2Cd2σ2
max log(A/δ)
Γ

}
(3.10)

Lemma 3.1. (OLS-WLS Concentration Lemma) After Γ samples of explo-
ration, we can show that P (ξvarδ (Γ)) ⩾ 1 − 8δ, where C > 0 is a constant.

Proof (Overview) of Theorem 3.1: Note that we construct an ini-
tial estimate θ̂Γ of θ∗ using OLS estimate based on the first Γ rounds of
data {at, rt}Γt=1. Let the feature of at be xt and the squared residual yt :=
(x⊤
t θ̂Γ−rt)

2. Recall that SPEED estimatesΣ∗ via minS∈Rd×d
∑Γ
t=1(

〈
xtx⊤

t , S
〉
−
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yt)
2. Let ζΓ := θ̂Γ − θ∗. Then we can show that yt = x⊤

t Σ∗xt + ϵt and the
noise ϵt can be bounded by

ϵt = η
2
t − E[η2

t]︸ ︷︷ ︸
Part A

+ 2ηtx⊤
t ζΓ︸ ︷︷ ︸

Part B

+
(
x⊤
t ζΓ

)2︸ ︷︷ ︸
Part C

.

For the part A, observe that η2
t is a sub-exponential random variable as

ηt ∼ SG(0, x⊤
t Σ∗xt). Hence we can use sub-exponential concentration

inequality from Theorem B.2 (Chapter B) to bound it. For part C first
recall that ζΓ := θ̂Γ − θ∗ and we use Theorem B.3 (Chapter B) to bound
it. Finally, for part B, we can decompose 2ηtx⊤

t ζΓ ⩽ 2η2
t +

1
2(x

⊤
t ζΓ )

2. Then
using the same technique for parts A and C we bound the total deviation
for part B. Combining the three parts gives the desired concentration
inequality. The proof is in Section B.1. ■

Theorem 3.1 directly leads to Theorem B.11 (Section B.1) which shows
that forn ⩾ 16C2d4 log2(A/δ)/σ4

min we have thatLn(π, b̂, Σ̂Γ ) ⩽ L ′
n−Γ (π, b̂, Σ̂Γ ).

Compared to earlier work, Fontaine et al. (2021) does not require this ap-
proach as the variances of each action lack a common structure. Similarly,
this approach differs from the time-dependent variance model of Zhang
et al. (2021); Zhao et al. (2022).

Step 3 (Bounding the approximation error and comparing two dif-
ferent losses): For the approximation error in (3.8) we need access to
an optimization oracle that gives ϵ approximation error (Assumption 5).
Then setting ϵ = 1√

n
we have that the estimation error is upper bounded

by n−3/2. For comparing the two different losses in (3.8), we use their
definition of to bound it as Oκ2,H2

u
(
d2 log(A/δ)

n3/2 ) as shown in (B.22) in Sec-
tion B.1.

Step 4 (Bounding Estimation Error): Now observe that the third quan-
tity in (3.8) (estimation error of Σ∗) contains Ln(π, b∗, Σ̂Γ ) that depends
on the design matrix A−1

b∗,Σ̂Γ
which in turn depends on the estimation of Σ̂Γ .

Similarly Ln(π, b∗,Σ∗) in the third quantity depends on the design matrix
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A−1
b∗,Σ∗

which in turn depends on the true Σ∗. Hence, we now bound the
concentration of the loss under A−1

b∗,Σ̂Γ
against the design matrix A−1

b∗,Σ∗
in

the following lemma.

Lemma 3.2. (Concentration of the design matrix) Let Σ̂Γ be the empirical
estimate of Σ∗, and V =

∑
a,a ′ w(a)w(a ′)⊤. For any arbitrary proportion b,

with probability at least (1 − δ), we have the following:

∣∣∣∣∑
a,a ′

w(a)⊤(A−1
b∗,Σ̂Γ

− A−1
b∗,Σ∗

)w(a ′)

∣∣∣∣ ⩽ 2CB∗d3σ2
max log(A/δ)
Γ

,

where B∗ is a problem-dependent quantity and C > 0 is a universal constant.

Proof (Overview) of Theorem 3.2: We can upper bound |
∑
a,a ′w(a)⊤(A−1

b∗,Σ̂Γ
−

A−1
b∗,Σ∗

)w(a ′)| ⩽ ∥u∥
∥∥∥Ab∗,Σ∗ − Ab∗,Σ̂Γ

∥∥∥︸ ︷︷ ︸
∆

∥v∥ where, ∥u∥ = ∥A−1
b∗,Σ∗

w∥ and

∥v∥ = ∥A−1
b∗,Σ̂Γ

w∥. First, observe that ∥u∥ is a problem-dependent quantity.
Then to bound ∆ we use the Theorem 3.1 on the concentration of σ̂2

Γ (a).
Finally to bound ∥v∥ we need to bound σ̂2

Γ (a) ⩽ σ2(a) +
2Cd2σ2

max log(A/δ)
Γ

where σ̂2
Γ (a) is the empirical variance of σ2(a). Combining everything

yields the desired result. The proof is in Section B.1 ■

One of our key technical contributions in Theorem 3.2 is to show that the
difference between the two losses Ln(π, b∗, Σ̂Γ ), and Ln(π, b∗,Σ∗) scales
with d3 instead of the number of actions A. In contrast to prior work, a
similar loss concentration in Fontaine et al. (2021) scales with A. Now
using Theorem 3.2, setting the exploration factor Γ =

√
n, and δ = 1

n
we

can show that the estimation error is upper bounded by B∗Cd3σ2
max log(n)

σ2
minn

3/2 +

d2

n2 Tr(
∑
a,a ′ w(a)w(a ′)⊤). Combining steps 1 – 4 we have the regret of

SPEED as Oκ2,H2
U
(
B∗d3σ2

max log(n)
σ2

minn
3/2 ). The full proof of Theorem 1 is in Sec-

tion B.1. ■.
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Lower Bound

Theorem 1 upper bounds the regret of our agnostic algorithm SPEED
compared to an oracle algorithm with knowledge of Σ∗. To quantify the
tightness of our upper bound, we now turn to the question of whether we
can lower bound the regret for any behavior policy learning algorithm.
For our final theoretical result, we consider a slightly different notion of
regret: R ′

n := Ln(π, b̂,Σ∗) − Ln(π, b∗,Σ∗). This notion of regret captures
how sub-optimal the estimated b̂ is compared to b∗, without additional
error incurred by using an estimate of Σ∗ in the WLS estimator. We con-
jecture that R ′

n is indeed a lower bound to Rn as we have established in
Proposition 1 that the minimum variance estimator is the WLS estima-
tor using Σ∗. Intuitively, Ln(π, b̂,Σ∗) is a lower bound to Ln(π, b̂, Σ̂Γ ) as
estimation error will likely increase when using Σ̂Γ in place of Σ∗ in the
WLS estimator. We leave proving that R ′

n is a lower bound to Rn to future
work.

Theorem 2.(Lower Bound)Let |Θ|=2d, θ∗∈Θ. Then any arbitrary δ-PAC pol-
icy following the design b ∈ △(A) satisfies R ′

n=Ln(π, b,Σ∗)−Ln(π, b∗,Σ∗)⩾

Ω
(
d2λd(V) log(n)

n3/2

)
for the environment specified in (B.26).

Proof (Overview:) The proof follows the change of measure argument
(Lattimore and Szepesvári, 2020a) and we follow the proof technique
of Huang et al. (2017); Mukherjee et al. (2022b). We reduce the policy
evaluation problem to the hypothesis testing setting and state a worst-case
environment as in (B.26). We then show that the regret of any δ-PAC algo-
rithm against an oracle in this environment must scale asΩ(logn/n3/2).
The proof is given in Section B.2. ■

From the above result, the upper bound of SPEED regret Rn matches
the lower bound of regret R ′

n in n but suffers an additional factor of d.
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3.6 Experiments
We now conduct numerical experiments to show that SPEED decreases
MSE faster than other baselines. These experiments complement our theo-
retical analysis as they do not have the conditions on budget n required in
Theorem 1. Thus, our experimental analysis will show that the theoreti-
cally motivated SPEED algorithm still provides benefit even outside of the
sample regime considered in theory. As baselines, we compare against
Onpolicy, Oracle , A-Optimal (Fontaine et al., 2021), and G-Optimal (Wan
et al., 2022). The Onpolicy algorithm simply runs the target policy to
collect data, whereas the Oracle (as discussed in Section 3.3) samples ac-
cording to the optimal b∗. Of existing optimal design methods, A-Optimal ,
and G-Optimal are the closest in relation to our work. We experiment with
A-Optimal design because this criterion minimizes the average variance
of the estimates of the regression coefficients and is most closely aligned
with our goal. The work of Wan et al. (2022) considers data collection
under safety constraints using Inverse Propensity Weighting. In our un-
constrained policy evaluation setting their approach boils down to just
G-optimal design. Further experimental details are in Section B.3.

Unit Ball: We perform this experiment on a set of 5 actions that are
arranged in a unit ball in R2 to show that SPEED allocates proportion to
the most informative action (weighted by their variance). Figure 3.1 (Top
Left) shows that SPEED reduces the MSE faster than Onpolicy, G-Optimal
, and A-Optimal . We also include Oracle in this setting to show how
quickly SPEED converges to it. However, for settings based on real-life
data, we do not have such oracles.

Movielens Dataset: Consider a startup that wants to recommend
movies to users based on their ratings. They have access to a target policy
and want to evaluate it on a limited informative dataset before deploying
it for full public use. We use real-world Movielens 1M dataset (Lam
and Herlocker, 2016) datasets for this experiment. We apply low-rank
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Figure 3.1: (Top-left) MSE plot for the Unit ball. (Top-right) MSE plot
for the Movielens dataset. (Bottom-left) MSE plot for Red Wine Quality
dataset. (Bottom-right) MSE plot for Air Quality dataset. The vertical axis
gives MSE and the horizontal axis is the number of rounds. The vertical
axis is log-scaled and confidence bars show one standard error.

factorization to the rating matrix to obtain 5-dimensional representations
of users and movies. We then fit a weighted least square estimate of θ∗

and Σ∗. We generate the reward using this θ∗ and Σ∗. Then we use SPEED
and other baselines to generate the small informative dataset to evaluate
the target policy and this experiment is shown in Figure 3.1 (Top Right).
SPEED initially conducts forced exploration to estimate θ∗, Σ∗ and incurs
slightly higher MSE but the MSE decreases faster than other baselines as
the number of rounds increases.



66

Red Wine Quality: Consider an online wine company that wants to
recommend wines to users and wants to evaluate a target policy before
full deployment. We perform this experiment on real-world dataset Red
Wine Quality from UCI datasets (Cortez et al., 2009). The dataset consists
of 1600 samples (actions) of red wine with each sample a having feature
x(a) ∈ R11 and their ratings. We fit a weighted least square estimate to the
original dataset and get an estimate of θ∗ and Σ∗. Then we use SPEED to
generate the informative dataset to evaluate the target policy. Figure B.1
(Bottom-left) shows SPEED outperforming other baselines as horizon
increases.

Air Quality: We now consider a setting where a government agency
wants to record air quality and notify the public. However, it wants to
evaluate a target policy on a limited informative dataset before full deploy-
ment. We perform this experiment on real-world dataset Air-Quality from
UCI datasets (De Vito et al., 2008). The dataset consists of 1500 samples
(actions) with each sample a having feature x(a) ∈ R6 and their air quality
value. Similar to red wine dataset we estimate of θ∗ and Σ∗. Then we use
SPEED and other baselines (which do not know θ∗ and Σ∗) to generate
the informative dataset to evaluate the target policy and this experiment is
shown in Figure 3.1 (Bottom-right). Observe that SPEED’s MSE decreases
faster than other baselines as the number of rounds increases.

3.7 Conclusions and Future Directions
We proposed SPEED for optimal data collection for policy evaluation
in linear bandits with heteroscedastic reward noise. We formulated a
novel optimal design problem, PE-Optimal design, for which the optimal
behavior policy is the solution that will produce minimal MSE policy
evaluation when using a weighted least square estimate of the hidden
reward parameters θ∗ and Σ∗. We showed the regret of SPEED degrades at
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the rate of Õ(d3n−3/2) and matches the lower bound of Õ(d2n−3/2) except a
factor of d. In contrast the Onpolicy suffers a regret of Õ(n−1) (Carpentier
et al., 2015). We showed empirically that our design outperforms other
optimal designs. In future work, we intend to extend the result to a more
general class of hard problems such as collecting data to minimize the
MSE of multiple target policies.



68

4 saver: optimal data collection strategy for
safe policy evaluation in tabular mdps

4.1 Introduction
Reinforcement learning has emerged as a powerful tool for decision-
making in a wide range of applications, from robotics (Ibarz et al., 2021;
Agarwal et al., 2022) and game-playing (Szita, 2012) to autonomous driv-
ing (Kiran et al., 2021), web-marketing (Bottou et al., 2013), healthcare
(Fischer, 2018; Yu et al., 2019) and finance (Hambly et al., 2021). However,
in these applications, it is often necessary to first evaluate the decision-
making policy before its long-term deployment in the real world. In fact,
policy evaluation is a critical step in reinforcement learning, as it allows
us to assess the quality of a learned policy and to check whether it can
truly achieve the desired goal for the target task. One potential solution to
this issue is off-policy evaluation (OPE) (Dudík et al., 2014; Li et al., 2015;
Swaminathan et al., 2017; Wang et al., 2017; Su et al., 2020; Kallus et al.,
2021; Cai et al., 2021). However, for OPE estimators there is no control over
how the static dataset is generated, which could result in low accuracy
estimates.

Hence, a natural idea is to actively gather the dataset using an adaptive
behavior policy and thus increase accuracy in the evaluation of the target
policy’s value. In many real-world settings, the behavior policy itself
must satisfy some side constraints (specific to the industry) (Wu et al.,
2016) or safety constraints (Wan et al., 2022) while collecting the dataset.
For instance, in web marketing, it is common to run an A/B test with
safety constraints over a subset of all users before a potential new policy
is deployed for all users (Kohavi and Longbotham, 2017; Tucker and
Joachims, 2022b). While testing autonomous vehicles it is quite natural
to incorporate safety constraints in the behavior policy. So it is of great
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practical importance to ensure that our data collection rule is safe (Zhu
and Kveton, 2022b).

In this paper, we consider the question of optimal data collection for
policy evaluation under safety constraints in the tabular reinforcement
learning (RL) setting. Consider the following scenario that could arise in
web marketing. Suppose we have a policy learned from offline data that
has never been run in a real application. Moreover, we want this learned
policy to be at least as good as a baseline policy that is already deployed in
the application (Wu et al., 2016; Zhu and Kveton, 2021, 2022b). Off-policy
evaluation often has high variance, so engineers may want to have some
controlled deployment where the learned policy only makes decisions for
some users before letting the policy make decisions for all users. We are
motivated by how to make this controlled deployment as data-efficient
and safe as possible. By safe, we mean that we want the expected return
seen during data collection to remain close to the expected return under
the baseline policy. A similar motivation can be found in Tucker and
Joachims (2022b). In this paper, we focus on finding a behavior policy
that produces a minimal variance estimate while remaining safe. We can
state this formally as follows: We are given a target policy, π, for which we
want to estimate its value denoted by Vπ(s1), where s1 is an arbitrary start
state. To estimate Vπ(s1) we will generate a set of K episodes where each
episodic interaction ends after L time steps. We denote the total available
budget of samples asn = KL. Each episode is generated by following some
behavior policy and collect the dataset D. Let Yπn(s1) be the estimate of
Vπ(s1) computed from D. Then our objective is to determine a sequence of
behavior policies that minimizes error in the estimation of Vπ(s1) defined
as ED[(Y

π
n(s1) − V

π(s1))
2] subject to a safety constraint on the cost-value

of the behavior policies (to be defined later) that must hold with high
probability.

There is a growing body of literature studying this important problem
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of data collection for policy evaluation in both constrained and uncon-
strained setups. The work of Antos et al. (2008); Carpentier and Munos
(2011, 2012); Carpentier et al. (2015); Fontaine et al. (2021); Mukherjee
et al. (2022a, 2024g) studies this problem in the bandit setting without any
constraints under the finite sample regime. A common metric of perfor-
mance that these works consider is the difference between the loss of the
agnostic algorithm that does not know problem-dependent parameters,
and the oracle loss (which has access to problem-dependent parameters).
This metric is termed regret and these works show that in the bandit setting
the regret of the agnostic algorithm scales as Õ(n−3/2) where Õ(·) hides
log factors. One might be tempted to just run the target policy π, build D

and then estimate Yπn(s1). This is called on-policy data collection. However,
these works show that the on-policy regret degrades at a much slower
rate of Õ(n−1) compared to active agnostic algorithms. Hence, a natural
question arises, can we achieve similar performance for policy evaluation
in the MDP setup under a finite sample regime even when we must con-
form to safety constraints? Thus, the goal of our work is to answer the
following questions:

1) Is there a class of MDPs where it is possible to incur a regret
that degrades at a faster rate than Õ(n−1)? while satisfying safety
constraints?

2) If the answer is yes to (1), can we design an adaptive algorithm (for this
class of MDPs) to collect data for policy evaluation that does not violate
the safety constraints (in expectation), and its regret degrades at a faster
rate than Õ(n−1)?

In this paper, we answer these questions affirmatively. Regarding the
first question, we state the tractability condition on the class of MDPs which
enables the optimal behavior policy to gather data for policy evaluation
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without violating the safety constraint and suffer a regret of Õ(n−3/2). This
condition leads to the first lower bound for this setting.

We also note that safe data collection for policy evaluation has also been
studied in the bandit setting in Zhu and Kveton (2021, 2022b). However,
we are the first to provide finite-time regret guarantees when per-step
constraints must be maintained in expectation. We also show that in the
bandit setup, our method empirically outperforms the adaptive impor-
tance sampling based algorithms in these works. Our formulation is also
related to constrained MDPs though we specify that the constraint must
be satisfied throughout learning and not just by the final policy (Efroni et al.,
2020; Vaswani et al., 2022). We discuss further related works in Section 4.3.

Our main contributions are as follows:
(1) We formulate the problem of safe data collection for policy eval-

uation. We introduce the safety constraint such that at the end of n tra-
jectories, the cumulative cost is above a constant factor of the baseline
cost. To our knowledge, this is the first work to study this setting under
such a safety constraint in the MDP setup with the goal of minimizing the
estimate of the MSE of the target policy’s expected reward.

(2) We then show that even in the special case of finite tree-structured
MDPs the safe data collection for policy evaluation can be intractable.
Then we come up with a condition on MDPs that enables any behavior
policy to collect data without violating safety constraints. We also provide
the first regret lower bound for the bandit and Tree MDP setting and show
that it scales withΩ(n−3/2).

(3) We then consider an oracle strategy that knows the reward vari-
ances (problem-dependent parameter) of the reward distributions and de-
rives its sampling strategy. We then introduce the agnostic algorithm Safe
Variance Reduction (SaVeR) that does not know the problem-dependent
parameters and show that its regret scales as Õ(n−3/2). We evaluate its per-
formance against other baseline approaches and show that SaVeR reduces
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MSE faster while satisfying the safety constraint.

4.2 Preliminaries
We consider the standard finite-horizon Markov Decision process, M,
with both a reward and constraint function. Formally, M, is a tuple
(S,A,P,R,C,γ,d0,L), where S is a finite set of states, A is a finite set of
actions, P : S × A × S → [0, 1] is a state transition function, R is the
reward function (formalized below), C is the constraint function (for-
malized below), γ ∈ [0, 1) is the discount factor, d0 is the starting state
distribution, and L is the maximum episode length. A (stationary) policy,
π : S × A → [0, 1], is a probability distribution over actions conditioned
on a given state. We assume data can only be collected through episodic
interaction: an agent begins in state s1 ∼ d0 and then at each step t takes
an action at ∼ π(·|st) and proceeds to state st+1 ∼ P(·|st,at).

When the agent takes an action, a, in state, s, it receives both a re-
ward R ∼ R(s,a) and a constraint value C ∼ C(s,a). We assume the
transition model P is known but the reward distributions and constraint
values are unknown. We define the reward value of a policy as: Vπ(s1) :=

Eπ[
∑n
t=1 γ

t−1Rt], where Eπ is the expectation w.r.t. trajectories sampled
by following π from the initial state s1. We define a constraint-value of
π similarly: Vπc (s1) := Eπ[

∑n
t=1 γ

t−1Ct]. For simplicity, let the initial state
distribution has probability mass on a single state s1.

Our goal is to efficiently estimate Vπ(s1) for a given policy π and this
estimation requires data from the environment MDP. Past work has ap-
proached this problem by designing a sequence of behavior policies which
are ran to produce informative data for evaluating π. However, in practical
applications, it is often infeasible to simply run any behavior policy as
doing so may violate domain constraints. We formalize this constraint by
first assuming the existence of a safe baseline policy, π0 that provides an ac-
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ceptable constraint-value Vπ0
c (s1). Our objective is to determine a sequence

of behavior policies, {b1, .., bK}, that will produce a set of K episodes that
lead to the most accurate estimate of Vπ(s1) subject to the constraint that
the cumulative expected constraint-value Vb

c (s1) always exceeds a fixed
percentage of Vπ0

c (s1). We consider the objective:

min
b

ED[(Y
π
n(s1) − V

π(s1))
2
] (4.1)

s.t.
k∑
k ′=1

Vbk ′
c (s1) ⩾ (1 − α)kVπ0

c (s1) for all k ∈ [K]

where Yn(s1) is our estimate of Vπ(s1), α ∈ (0, 1] is the risk parameter, and
the expectation is over the collected data set D. We also make the following
simplifying assumption. We assumeπ0 is deterministic, i.e., will only select
one action in any given state. W.l.o.g., we give this action the index 0 and
refer to it as the safe action. The entire action set is A = {0, 1, . . . ,A}. This
assumption is reasonable in applications where existing, safe policies were
created through non-learning methods or manually designed.

For analysis, we will estimate Vπ(s1) with a certainty-equivalence es-
timator. We define the random variable representing the estimated fu-
ture reward from state s at time-step ℓ as Yπn(s, ℓ) :=

∑
a π(a|s)µ̂n(s,a) +

γ
∑
s ′ P̂n(s

′|s,a)Yπn(s ′, ℓ+1) where Yπn(s, ℓ+1):=0 if ℓ⩾L, and µ̂n(s,a) is an
estimate of µ(s,a), both computed from D. Finally, the estimate of Vπ(s1)

is computed as Yπn(s1) :=
∑
s d0(s1)Y

π
n(s1, 0). Note that the total available

budget of samples is n. We assume that there are K episodes and each
episodic interaction terminates in at most L steps which implies n = KL.

We assume Vb
c (s1) is known for b = π0 but not for any other policy. The

constraint in (4.1) implies that the total constraint value over all deployed
behavior policies should be above the total constraint value that can be
obtained from the baseline policy π0 till episode kwith high probability.
Observe that small values of α force the learner to be highly conservative,
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whereas larger α values correspond to a weaker constraint. A similar
setting has been studied for policy improvement by Wu et al. (2016); Yang
et al. (2021b) for a variety of sequential decision-making settings. However,
our objective is policy evaluation and we formulate a more general safety
constraint in terms of C(·) while these prior works define the constraint in
terms of R(·).

Similar to the recent works of Chowdhury et al. (2021); Ouhamma et al.
(2023); Agarwal et al. (2019); Lattimore and Szepesvári (2020a) we as-
sume the reward function R(s,a) = N(µ(s,a),σ2(s,a)), where N denotes
a Gaussian distribution with mean µ(s,a) and variance σ2(s,a). Simi-
larly we assume a constraint function C(s,a) = N(µc(s,a),σc,(2)(s,a)),
where µc(s,a) and σc,(2)(s,a) are the mean and variance of N(·). Note that
this sub-Gaussian distribution assumption is required only for theoreti-
cal analysis, whereas our algorithm works for any bounded reward and
cost functions. We assume that we have bounded reward and constraint
mean µ(s,a),µc(s,a) ∈ [0,η] respectively. Finally, we define the MSE of a
behavior policy b for the target policy π at the end of budget n as

Ln(π, b) = ED[(Y
π
n(s1) − V

π(s1))
2
] (4.2)

where the expectation is over dataset D which is collected by b. Our main
objective is to minimize the cumulative regret Rn subject to the safety
constraint defined in (4.1). To define Rn we first define the MSE of a safe
oracle behavior policy bk∗ that collects the dataset D as L∗

n(π, bk∗). We will
formally describe such oracle policies in Section 4.4. Then the regret Rn is
defined as

Rn = Ln(π, b) − L∗
n(π, bk∗). (4.3)
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4.3 Related Works
Our work lies at the intersection of two areas: 1) optimal data collection
for policy evaluation, and 2) safe sequential decision-making. Optimal
data collection for policy evaluation has been studied in reinforcement
learning (Antos et al., 2008; Carpentier and Munos, 2012, 2011; Carpentier
et al., 2015; Hanna et al., 2017a; Mukherjee et al., 2022a; Riquelme et al.,
2017; Fontaine et al., 2021; Mukherjee et al., 2024g; Zhong et al., 2022b)
without considering the safety constraints. In the bandit setting the optimal
data collection has been studied in the context of estimating a weighted
sum of the mean reward associated with each arm. Antos et al. (2008)
study estimating the mean reward of each arm equally well and show that
the optimal solution is to pull each arm proportional to the variance of
its reward distribution. Since the variances are unknown a priori, they
introduce an algorithm that pulls arms in proportion to the empirical
variance of each reward distribution. A similar set of works by Carpentier
and Munos (2012); Carpentier et al. (2015) extend the above work by
introducing a weighting on each arm that is equivalent to the target policy
action probabilities in our work. They show that the optimal solution is
then to pull each arm proportional to the product of the standard deviation
of the reward distribution and the arm weighting. The work of Riquelme
et al. (2017); Fontaine et al. (2021); Mukherjee et al. (2024g) considers the
linear bandit setting to study the policy evaluation setup where actions
have different variances. Finally, Mukherjee et al. (2022a) study the policy
evaluation setting for tabular MDP. However, these works only look into
the policy evaluation setting without considering the safety constraint
introduced in (4.1).

The safe sequential decision-making setup has recently attracted much
attention in machine learning (Amodei et al., 2016; Turchetta et al., 2019)
and reinforcement learning (Efroni et al., 2020; Wachi and Sui, 2020; Camil-
leri et al., 2022). In reinforcement learning, and specifically in the bandit
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setting, safety has been studied in the context of policy improvement.
In the bandit literature regret minimization under safety constraints has
been studied in Wu et al. (2016); Kazerouni et al. (2017); Amani et al.
(2019); Garcelon et al. (2020). In these works the safety requirements are
encoded in the form of constraints on the cumulative rewards observed
by the learner. These works refer to the setup as conservative bandits
because exploration is limited by the constraints on the cumulative reward.
The work of Wu et al. (2016) consider the setting of stochastic bandits
for policy improvement with a safety constraint similar to (4.1). How-
ever, Kazerouni et al. (2017); Amani et al. (2019); Garcelon et al. (2020);
Moradipari et al. (2021); Pacchiano et al. (2021); Hutchinson et al. (2024)
study the linear bandit setting under safety constraints where the actions
have features associated with them. Note that none of the above works
study policy evaluation under safety constraints. Wan et al. (2022); Zhu
and Kveton (2021, 2022b) analyzes off policy evaluation in the context
of designing a non-adaptive policy using inverse probability weighting
estimator (as opposed to designing an adaptive policy using certainty
equivalence estimator in this work).

In the MDP setting the works of Efroni et al. (2020); Altman (2021);
Wachi et al. (2024); Li et al. (2024a); Zheng et al. (2024); Xiong et al.
(2024); Ding et al. (2024); Wang et al. (2024); Mazumdar et al. (2024)
study different variations of the safe exploration in constraint MDPs in
both offline and online policy improvement settings. The work of Yang
et al. (2024) studies the safe policy improvement in constraint MDP setting
under non-stationary policies. The work of Gupta et al. (2024) proposed a
safe policy improvement approach for variable horizon setting such that
the safe reinforcement learning agent uses a variable look-ahead horizon
to avoid unsafe states. The constrained MDP problems have also been
looked into from the lens of optimization where Chen et al. (2021b, 2022a);
Qiu et al. (2020); Ding et al. (2020); Vaswani et al. (2022); Ding et al.



77

(2021); Liang et al. (2018); Ying et al. (2024) have proposed a primal-dual
sampling-based algorithm to solve CMDPs for the policy improvement
setting.

4.4 Intractability and Lower Bounds
In this section, we first define an oracle data collection strategy that ig-
nores the constraints. We call this the unconstrained oracle. This oracle
data collection algorithm can reach a regret bound of Õ(n−3/2) in the un-
constrained setting (Carpentier and Munos, 2012; Carpentier et al., 2015;
Mukherjee et al., 2022a). We then show how data collection for policy
evaluation under safety constraints in MDPs is challenging compared to
standard policy improvement challenges in constrained MDPs (Efroni
et al., 2020; Vaswani et al., 2022) as well as safe data collection for policy
evaluation in bandits (Zhu and Kveton, 2021; Wan et al., 2022; Zhu and
Kveton, 2022b). To show this challenging aspect, we first discuss how the
unconstrained oracle fails to satisfy the constraint and achieve the desired
regret of Õ(n−3/2) in the constraint MDP setting. We then propose a safe
variant of the oracle policy and finally, discuss a tractability condition that
enables the safe oracle algorithm to achieve a regret bound of Õ(n−3/2).

Unconstrained Oracle

In this section, we discuss the unconstrained oracle data collection strategy
that knows the variances of reward and constraint value but does not know
the mean of either. Moreover, this oracle does not take into account the
safety constraints in (4.1). For easier exposition of our results, we again
state the learning procedure of the oracle. After observing n samples
(state-action-reward tuples), the oracle computes the estimate of Vπ(s1

1)

as Yπn(s1
1) =

∑A
a=1 π(a|s

1
1)
(
µ̂n(s

1
1,a) +

∑
sℓ+1
j
P(s2

j |s
1
1,a)Yn(s2

j)
)
. Note that

we defined Yπn(s, ℓ) before, but now we use Yπn(s) and assume the time
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step is implicit in the state for this finite-horizon MDP. Mukherjee et al.
(2022a) shows that in the unconstrained setting, to reduce the Var(Yπn(s1

1))

the optimal sampling proportion of the oracle for any state sℓi is:

b∗(a|s
ℓ
i) ∝

(
π2(a|sℓi)

[
σ2(sℓi,a) +

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)M2(sℓ+1

j )
]) 1

2 (4.4)

where,M(sℓj) is the normalization factor defined as follows:

M(sℓi) =
∑
a

(
π2(a|sℓi)

(
σ2(sℓi,a) +

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)M2(sℓ+1

j )
)) 1

2 . (4.5)

Observe from the definition of b∗(a|s
ℓ
i) that the optimal proportion in

the terminal states, i.e. b∗(a|s
L
j ), do not affect subsequent states and only

depends on the target probability π2(a|sℓi) and variance σ2(sℓi,a). The key
difference is in the non-terminal states, sL−1

i , where the optimal action
proportion, b∗(a|s

L−1
i ) depends on the expected terminal state normal-

ization factor M(sLj ) where sLj is a state sampled from P(·|sL−1
i ,a). The

normalization factor, M(sLj ), captures the total contribution of state sLj
to the variance of Yπn(sL−1

j ) and thus actions in the starting state must be
chosen to 1) reduce variance in the immediate reward estimate and to
2) get to states that contribute more to the variance of the estimate. This
observation is also noted in Mukherjee et al. (2022a). Finally, since b∗(a|s)

also depends on P(s ′|s,a), it will put a low sampling proportion on actions
a leading to such s ′ which has low transition probabilities.

Safe Oracle Algorithm for Safe Data Collection

The behavior policy defined in the previous section ignores the safety
constraint and is thus inapplicable to our problem setting. In this section,
we describe a safe variant of this oracle. We define a few notations be-
fore introducing the safe algorithm. Let Tkℓ (s,a) :=

∑k−1
k ′=1

∑ℓ−1
ℓ ′=1 1{Sk ′

ℓ ′ =
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s,Ak ′

ℓ ′ =a} be the number of times (s,a) is visited before episode k. Let the
mean reward estimate of (s,a) till episode k be computed as µ̂kℓ (s,a) :=
(Tkℓ (s,a))−1 ∑k−1

k ′=1
∑ℓ−1
ℓ ′=1 1{Sk ′

ℓ ′ = s,Ak
′

ℓ ′ =a}R
k ′

ℓ ′ , where Rk ′

ℓ ′ is the observed
reward. Similarly define the constraint-values estimate µ̂kc,ℓ(s,a) based on
constraint value Ckℓ . Define the confidence interval at the time step L of
k-th episode as βkL(s,a) := L

√
log(SAn(n+ 1))/TkL (s,a) (Agarwal et al.,

2019).
Let Ybk

c,L(s
1
1) =

∑A
a=1 bk(a|s1

1)
(
µ̂kc,L(s

1
1,a)+

∑
sℓ+1
j
P(s2

j |s
1
1,a)Ybk

c,L(s
2
j)
)

de-
note the empirical estimate of Vbk

c (s1
1) at the end of the k-th episode, and

µ̂kc,L(s,a) is the empirical estimate of µc(s,a) at the end of the k-th episode.
Note that the oracle algorithm knows the variances of reward R(·) and
constraint-value C(·). Using this knowledge, it maintains a safety budget
Ẑk−1
L where Ẑk−1

L :=
∑k−1
k ′=1(Y

bk ′
c,L (s

1
1) − β

k ′

L (s,a)) − (1 − α)(k − 1)Vπ0
c (s1

1)

is the safety budget at the end the k − 1-th episode. The Ybk
c,L(s

1
1) =

Ybk
c,L(s

1
1) − β

k
L(s,a) is the lower confidence bound to the Ybk

c,L(s
1
1).

Exploration policy πx: We require an exploration policy πx as the
oracle algorithm needs a good estimation of the constraint-value µc(s,a)
and following the oracle proportion b∗(a|s) may not lead to a good es-
timation of µc(s,a). This exploration policy should ensure with high
probability that the estimation error of µc(s,a) is low in each (s,a) for
which π(a|s) > 0 and can be an optimal design based policy like PEDEL
that explores the state space informatively (Wagenmaker and Jamieson,
2022) or other exploration policies (e.g., Dann et al. (2019); Ménard et al.
(2020); Uehara et al. (2021)).

We now state the following safe oracle algorithm: At the k-th episode
run the policy

bk∗ =


b∗, if Ẑk−1

L ⩾ 0,k >
√
K

π0 if Ẑk−1
L < 0

πx, if Ẑk−1
L ⩾ 0,k ⩽

√
K

. (4.6)
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The safe oracle algorithm in (4.6) alternates between the optimal oracle
policy b∗ in (4.4) when the safety budget Ẑk−1

L at the start of the episode
k is greater than 0, otherwise it falls back to running the baseline policy
π0. Additionally, the safe oracle conducts forced exploration for at most√
K episodes when Ẑk−1

L ⩾ 0 using the exploration policy πx to estimate
µc(s,a). This is because following the oracle proportion b∗ in (4.4) that
samples high variance state-action tuples may not lead to a good estimate
of µc(s,a).

An Intractable MDP

In this section, we now show that there exist MDPs where even a safe
oracle algorithm may not be able to reach the desired Õ(n−3/2) regret
bound. We then introduce the tractability condition which depends on
the budget as the b∗ needs to be run sufficient number of times to reach
a regret of Õ(n−3/2). So a more benign MDP allows one to run b∗ most
of the time whereas a less benign MDP allows you to play b∗ less. Hence
tractability depends on the budget being sufficiently large and also de-
pends on properties of the MDP and the risk parameter α. To show this
challenging aspect of safe data collection, we first define a Tree MDP. Us-
ing Tree MDPs to analyze the hardness of learning in MDPs and deriving
lower bounds is common in the literature (Jiang and Li, 2016; Weisz et al.,
2021; Wagenmaker et al., 2022b; Jin et al., 2022). The tree MDP is defined
as follows:

Definition 4.1. (Tree MDP) An MDP is a discrete tree MDP T ⊂ M in
which: (1) There are L levels indexed by ℓ where ℓ = 1, 2, . . . ,L. (2) Every
state is represented as sℓi where ℓ is the level of the state s indexed by i. (3) The
transition probabilities are such that one can only transition from a state in level
ℓ to one in level ℓ + 1 and each non-initial state can only be reached through
one other state and only one action in that state. Formally, ∀s ′, P(s ′|s,a) ̸= 0
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for only one state-action pair s,a and if s ′ is in level ℓ + 1 then s is in level ℓ.
Finally, P(sL+1

j |sLi ,a) = 0, ∀a. (4) For simplicity, we assume that there is a
single starting state s1

1 (called the root). It is easy to extend our results to multiple
starting states with a starting state distribution, d0, by assuming that there is
only one action available in the root that leads to each possible start state, s, with
probability d0(s). The leaf states are denoted as sLi . (5) The interaction stops
after L steps in state sLi after taking an action a.

Proposition 1. Fix an arbitrary n > 0. Then there exists an environment where
no algorithm (including the safe oracle bk∗) can be run that will result in a regret
Rn = Ln(π, b∗

k) −L∗
n(π, b∗) of Õ(n−3/2) while satisfying the safety constraint,

where b∗ is the unconstrained oracle.

Proof (Overview) We first construct a worst-case 3 armed bandit
environment (MDP with single state) such that µc(0) = 0.5, µc(1) =

0.5 + α, µc(2) = 0 and variance of σr,(2)(0) = 0.001, σr,(2)(1) = 0.001 and
σr,(2)(2) = 0.25. So action {2} has low constraint value (unsafe) but has
high variance. So the safe oracle policy must sample the action 2 a large
number of times to reach a regret of Õ(n−3/2). However, since action {2} is
unsafe, the safe oracle has to sample baseline action 0 a sufficient number
of times to accrue some safety budget. Combining these two observations
we show that achieving a regret rate of Õ(n−3/2) is impossible. The full
proof is in Section C.1.

The key reason the above environment is intractable is that some trajec-
tories taken by safe oracle has very less constraint value associated with
them, compared to the trajectory taken by the baseline policy. To rule out
such pathological MDPs, we define the tractability condition as follows:
Let b− be any behavior policy that minimizes Vcb (s1). Define Vcb−(s1) as
the value of the policy b− starting from state s1. This policy b− suffers a
value Vcb−(s1) that is lower than any other behavior policy b. So this policy
b− can be thought of as the worst possible behavior policy that can be
followed by the agent during an episode. Then the tractability condition
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states that

√
n ⩾

1
α

(
1 −

Vcb−(s1)

Vcπ0(s1)

)
Cσ
α

(
1 −

Vcb−(s1)

Vcπ0(s1)

)
− 1

(4.7)

where Cσ ∈ (0, 1) is a MDP dependent parameter that depends on the
reward variance of state-action pairs such that Cσ

α

(
1 −

Vcb−(s1)

Vcπ0(s1)

)
− 1 > 0.

The quantity Cσ = maxs,a
b∗(a|s)
M(s)

where b∗(a|s) and M(s) are defined in
(4.4) and (4.5) respectively. So Cσ ∈ (0, 1) and it captures the worst case
trajectory that can be followed by b∗.

This condition in (4.7) gives us (1) the lower bound to the budget
n to run the behavior policy b− to achieve a regret bound of Õ(n−3/2)

and satisfy the safety constraint; (2) Vcb−(s1) < V
c
π0
(s1) so that the RHS is

positive, (3) depends on the reward variance of state action pairs in the
MDP so that Cσ

α

(
1 −

Vcb−(s1)

Vcπ0(s1)

)
− 1 > 0, and (4) for smaller α (high risk)

the R.H.S increases which increases the required budget n. We further
discuss how this condition in (4.7) is derived in Theorem C.3. Then we
define the following assumption.

Assumption 6. (Tractability) We assume a sufficiently large budget n and an
MDP M that satisfies the constraint in (4.7). We call such an MDP M tractable.

Assumption 6 ensures that even the worst possible behavior policy
b− that can reach a regret of Õ(n−3/2) has sufficient budget n to satisfy
the safety constraint. Moving forward, we will define regret relative to
this safe oracle bK∗ instead of the unconstrained oracle. Furthermore, we
assume tractability in (6) such that the safe oracle decreases MSE at a
comparable rate to the unconstrained oracle b∗. Define the reward regret
as Rn = Ln(π, b) −L∗

n(π, bk∗) where L∗
n(π, bk∗) is the safe oracle MSE, and

Ln(π, b) is the agnostic algorithm MSE that does not know reward or
constraint-value variances. Now we present the first general lower bound
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theorem for the safe data collection strategy in MDPs.

Theorem 1. (Lower Bounds) Let π(a|s) = 1
A

for each state s ∈ S. Under
Assumption 6 the regret Rn = Ln(π, b) − L∗

n(π, bk∗) is lower bounded by

E [Rn] ⩾


Ω

(
max

{
A1/3

n3/2 ,
(
H2

∗,(1)A
2/3

n3/2

)})
, (MAB)

Ω

(
max

{√
SAL2

n3/2 ,
(
H2

∗,(1)SAL
2

n3/2

)})
(MDP)

where, ∆0 = Vb∗
c (s1

1) − V
π0
c (s1

1) and H∗,(1) = 1
αV

π0
c (s1

1)
(αVπ0

c (s1
1) + ∆0) is the

hardness parameter.

Discussion: Theorem 1 shows that in the constrained setting the lower
bound scales asΩ(H2

∗,(1)n
−3/2). Note that we can recover the lower bound

for the unconstrained setting using this result. In the unconstrained bandit
setting the bound scales asO

(
A1/3n−3/2)which matches the lower bound

of Carpentier and Munos (2012) (see their Theorem 5). We also establish
the first lower bound for the unconstrained setting in data collection for
policy evaluation in the tabular MDP setup that scales asO

(√
SAL2n−3/2

)
.

The H∗,(1) captures the hardness in learning in the MDP and consists of
the gap ∆0, Vπ0

c (s1
1) and α. Note that H∗,(1) increases with α, and the ∆0

captures how much constraint value the b∗ can obtain compared to π0.
Finally, the smaller value of π0 increases the hardness as the π0 has to be
run more times so that the safety constraint is not violated.

Proof (Overview) We first build two deterministic tree MDPs T and
T ′ which differ in the variances at only one state. This leads to different
optimal oracle behavior policies in T and T ′. Then using the divergence
decomposition lemma for MDPs from Garivier and Kaufmann (2016);
Wagenmaker et al. (2022b) we show in Theorem C.9 that in T the re-
gret lower bound scales as Ω(

√
SAL2 log(n)/n3/2). Next, we follow a

reduction-based proof technique to prove the reward regret lower bound
in the constrained setting. Consider any sequential decision-making prob-
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lem A (for instance a multi-armed bandit problem, tabular RL) such that
there exists a problem-dependent constant ξ ∈ R that only depends on
on the number of actions in bandits, or state-action-horizon in tabular RL.
Then for a large budget n and any algorithm we have from Theorem C.8
and Theorem C.9 that E[Rn] ⩾ ξ

n3/2 for an MDP dependent parameter
ξ. Then we lower bound how many times under the budget n the al-
gorithm can run the baseline policy. This is lower bounded in step 2 as
E[Rn]≳min

{
ξ
n3/2 , (αV

π0
c (s1

1)+∆0)
2ξ2

(αV
π0
c (s1

1))
2n3/2

}
. We finish off the proof by noting that

the quantity H∗,(1)=
1

αV
π0
c (s1

1)
(αVπ0

c (s1
1) + ∆0) is the hardness parameter

when π(a|s) = 1/A, and substituting the value of ξ = A1/3 for bandits
(Theorem C.8) and ξ =

√
SAL2 for T (Theorem C.9). Since T ⊂M, this

result is a lower bound to M as well. The full proof is in Section C.2. ■

4.5 Agnostic Algorithm for Safe Policy
Evaluation

In this section, we introduce the more realistic agnostic algorithm that does
not know the mean and variances of the reward and constraint values of the
actions. We then analyze this algorithm and establish its finite-time MSE.
We call this algorithm Safe Variance Reduction algorithm (abbreviated as
SaVeR) as it reduces the variance of the estimated value of the target policy
by following (4.4) while simultaneously satisfying the safety constraint
(4.1) with high probability.

We introduce a few notations before presenting the algorithm. De-
fine the upper confidence bound on the empirical reward variance as
σ̂
k

L(s,a) := σ̂kL(s,a) + βkL(s,a), where βkL(s,a) is the confidence interval
defined in Section 4.4. We define the empirical sampling proportion for
an arbitrary state-action (sℓi,a) as b̂kℓ (a|sℓi). Define the policy b̂k∗,ℓ(a|s

ℓ
i) as

similar to b∗(a|s
ℓ
i) defined in (4.4), but it uses plug-in estimate σ̂kℓ (s,a)
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instead of σkℓ (s,a). This is because the agnostic algorithm does not know
the reward and constraint-value variances. We define Ẑk−1

L similar to (4.6).
Finally, we define our algorithm, SaVeR, as follows: At episode k run the
policy:

b̂k =


b̂k∗ if Ẑk−1 ⩾ 0,k >

√
K

π0 if Ẑk−1 < 0

πx if Ẑk−1 ⩾ 0,k ⩽
√
K

(4.8)

where b̂k∗ for the episode k is defined as follows: For each time step ℓ =
1, 2, . . . ,L sample action Akℓ=argmaxa

b̂k∗(a|s
ℓ
j)

Tkℓ (s
ℓ
j ,a)

, where b̂k∗(a|sℓj) is the plug-
in estimate of b∗(a|s

ℓ
j) as defined in (4.4). SaVeR alternates between the

exploration policy πx, plugin optimal policy b̂k∗ , and baseline policy based
on the safety budget Ẑk and the number of episodes K. In contrast to
(4.8) the oracle policy in (4.6) uses the true oracle proportions b∗ when
Ẑk−1 ⩾ 0,k>

√
K. Also, observe that the action selection rule ensures that

the ratio b̂k∗,ℓ(a|s)/T
k
ℓ (s,a)≈1. It is a deterministic action selection rule and

thus avoids inadvertently violating the safety constraint due to random
sampling from the optimal proportions b̂kℓ (a). Now we formally state the
SaVeR for the tree MDP. At every episode k ∈ [K] it generates a sampling
history Hk := {Skℓ ,Akℓ ,R(Skℓ ,Akℓ ),C(Skℓ ,Akℓ )}Lℓ=1 by selecting Akℓ according
to (4.8) and appends it to the dataset D. After observing the feedback
it updates the model parameters and estimates b̂k+1

1 (a|s) for each s,a. It
returns the dataset D to evaluate π. The pseudocode is in Algorithm 3.

We now present a theorem that gives the MSE of the agnostic algorithm
SaVeR in the tree MDP in the following theorem. We define the problem
complexity parameters M =

∑L
ℓ=1

∑
sℓj
M(sℓj) summed over all stated
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Algorithm 3 Safe Variance Reduction (SaVeR) for T
1: Input: Risk Parameter α > 0, target policy π.
2: Output: Dataset D.
3: Initialize D = ∅, b̂1(a|s) uniform over all actions.
4: for k = 1, 2, . . . ,K do
5: for ℓ = 1, 2, . . . ,L do
6: Get Hk := {Skℓ ,Akℓ ,R(Skℓ ,Akℓ ),C(Skℓ ,Akℓ )}Lℓ=1 by selecting bk ac-

cording to (4.8).
7: D← D ∪ {(Hk, b̂k)}
8: Update model parameters and estimate b̂k+1

1 (a|s) for each s,a
9: Return Dataset D to evaluate policy π.

s∈ [S]. Define predicted agnostic constraint violation

Cn(π, b̂k) :=
K∑
k=1

I{Ẑk < 0}

when taking actions according to (4.8). For scalars x,y ∈ Rdefine min+(x,y) :=
|min(x,y)|. Define the problem complexity parameterH∗,(2)=

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j)

where

H∗,(2)(s
ℓ
j)=

1
αµc(sℓj , 0)

∑
a∈A\{0}

π(a|sℓj)σ(s
ℓ
j ,a)

+

min
{
∆c(s

ℓ
j ,a),

∆c(s
ℓ
j , 0) − ∆c(sℓj ,a)}

}
. (4.9)

Remark 4.2. The quantity H∗,(2)(s
ℓ
j) signifies the total cost of maintaining the

safety constraint at state sℓj by sampling action 0 instead of sampling based on
π(a)σ(a). Observe that ∆c(sℓj , 0) − ∆c(s

ℓ
j ,a) = µc(s

ℓ
j ,a) − µc(s

ℓ
j , 0). So

min+{∆c(s
ℓ
j ,a),∆c(sℓj , 0) − ∆c(sℓj ,a)} depends on how close is the action a to

the best cost action µ∗,c(sℓj) or the baseline action 0. Also observe that because
of the min+ operator, this quantity cannot be 0. Further, observe that the gap is
weighted by π(a|sℓj)σ(sℓj ,a) signifying that actions with low variance and target
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probability contribute less to the constraint violation MSE. Also, observe that
higher risk setting (α → 0) leads to higher H∗,(2)(s

ℓ
j). Finally, it can be easily

verified that H∗,(2) > H∗,(1).

Now we present a theorem that we will use to bound the regret of
SaVeR in Tree MDP T under Assumption 6.

Theorem 2. (informal) The MSE of the SaVeR in T for n
log(SAn(n+1)/δ)⩾

O((LSA2)2+ SA

∆
c,(2)
min

+ 1
4H2

∗,(2)
) is bounded byLn(π, b̂k) ⩽ Õ

(M2(s1
1)

n
+
M2(s1

1)

n
(MLSA2+

H∗,(2))
2 +

(LSA2)2H2
∗,(2)M

2

mins b∗,k,(3/2)(s)n3/2

)
with probability (1 − δ). The total predicted con-

straint violations are bounded byCn(π, b̂k) ⩽ Õ
(H∗,(2)

2
n
Mmin

+LSA2+
(LSA2)2H2

∗,(2)M
2

n1/2

)
with probability (1 − δ), whereMmin := minsM(s).

Discussion: In Theorem 2 the first quantity upper bounding Ln(π, b̂k)
is denoted as the safe MSE when the safety budget Ẑk ⩾ 0 and scales as
M2(s1

1)/n. The second quantity is denoted as the unsafe MSE which is
accumulated due to constraint violation (Ẑk < 0) and sampling of the safe
action 0. Finally, the third quantity is the MSE suffered due to estimation
error of the variances σ2(s,a). Comparing the result of the Theorem 2
with the unconstrained setting of Mukherjee et al. (2022a) we have the
additional quantity of (MLSA2 +H∗,(2))

2/n where H∗,(2) is the problem-
dependent quantity summed over all states. Observe that if all actions are
safe then we have that L∗

n(π, b̂k) =M2(s1
1)/nwhich recovers the MSE of

the unconstraint setting in Carpentier and Munos (2011, 2012); Carpentier
et al. (2015); Mukherjee et al. (2022a).

Proof (Overview) The agnostic SaVeR does not know the reward
variances. The sampling rule in (4.8) ensures that the good variance event
ξv,K defined in (C.8) (step 2) holds such that SaVeR has good estimates of
reward variances. Then, note that in the tree MDP T we have a closed form
expression of b∗(s

ℓ
j |a). We divide the total budget n = nf + nu where nf

are the samples allocated when safety budget Ẑk ⩾ 0. The nf samples
are also used by the exploration policy πx to ensure a good estimate of
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the constraint means as stated in the event ξc,K (C.7). This is ensured
by πx and noting that n > SA log(1/δ)/∆2

c,min. The remaining samples
from nf are allocated for reducing the MSE by sampling according to
argmaxa(b∗(a|s)/T

k
ℓ (s,a)). We again prove an upper and lower bound to

Tn(s,a) in (C.17) in step 4 and (C.18) in step 5. Finally using Theorem C.1
we can bound the MSE for the duration nf for all actions a ∈ A \ {0} for
each state sℓj in step 6. Now for an upper bound to constraint violations,
we use the gap ∆αc (s,a) := (1−α)µc,0(s,a) −µc(s,a) to bound how much
each a ∈ A \ {0} in sℓj is underpulled and their pulls replaced by action
{0} weighted by π(a|sℓj)σ(sℓj ,a). This is captured by H∗,(2)(s). Summing
over all s, and horizon L gives the upper bound to the violations as shown
in step 7. Finally, we also show a lower bound to constraint violations to
bound the MSE for the duration when actions a ∈ A\ {0} are underpulled.
This is shown in steps 8 and 9 where we equate the safety budget to 0 to
obtain a lower bound to Tn(sℓj , 0) for each state sℓj . Combining everything
in step 10 gives the result. The proof is in Section C.3. ■

Note that we do not have a closed-form solution to bk∗ that both min-
imizes MSE as well as upholds (4.1) for all k ∈ [K] (as opposed to Car-
pentier and Munos (2011); Mukherjee et al. (2022b)). Therefore, we now
define two additional notions of regret. The first is the regret defined as
Rn = Ln(π, b̂k) − L

∗
n(π, bk∗) where L

∗
n(π, bk∗) is the upper bound to the

safe oracle MSE. The second is the constraint regret defined as follows:
R
c

n = Cn(π, b̂k) − C
∗
n(π, bk∗) where C

∗
n(π, bk∗) is the upper bound to the

oracle constraint violations. Note that the oracle knows the variances of
reward and constraint-values for all state-action tuples (but does not know
the mean of either). The following corollary bounds SaVeR regret.

Corollary 1. Under Assumption 6, the constraint regret of SaVeR is bounded by
R
c

n ⩽ O
( log(n)
n1/2

)
and the regret is bounded by Rn ⩽ O

( log(n)
n3/2

)
.

The proof is in Section C.4 and directly follows from Theorem 2, and
Proposition 2. In Proposition 2 in Section C.4 we prove the MSE upper
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bound of the oracle. Observe, that the regret decreases at a rate of Õ(n−3/2),
faster than the rate of decrease of on-policy MSE of Õ(n−1). Thus, we have
been able to answer the second main question of this paper affirmatively.
We also state a constraint and regret upper bound in the bandit setting in
Corollary 2 in Section C.4. Also, observe that our upper bound matches
the rate in the lower bound shown in Theorem 1.

4.6 Extension to DAG
In this section, we approximate the solution in T to DAG G and formulate
the safe algorithm for policy evaluation. We first define the DAG MDP in
the following definition.

Definition 4.3. (DAG MDP) A DAG MDP follows the same definition as the
tree MDP in Theorem 4.1 except P(s ′|s,a) can be non-zero for any s in layer ℓ,
s ′ in layer ℓ+ 1, and any a, i.e., one can now reach s ′ through multiple previous
state-action pairs.

Then we state the following lemma from Mukherjee et al. (2022a).

Lemma 4.4. (Proposition 3 of Mukherjee et al. (2022a)) Let G be a 3-depth,
A-action DAG defined in Theorem 4.3. The minimal-MSE sampling proportions
b∗(a|s

1
1), b∗(a|s

2
j) depend on themselves such that b(a|s1

1) ∝ f(1/b(a|s1
1)) and

b(a|s2
j) ∝ f(1/b(a|s2

j)) where f(·) is a function that hides other dependencies on
variances of s and its children.

The Theorem 4.4 (Mukherjee et al., 2022a) shows that one cannot derive
a closed-form solution to b∗ in G because of the existence of multiple paths
to the same state resulting in a cyclical dependency. Note that in T there is
only a single path to each state and this cyclical dependency does not arise.
If we ignore the multiple path problem, we can approximate the optimal
sampling proportion in G by using the tree formulation in the following
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way: At every time t during an episode k call the Algorithm 4 to estimate
M0(s) where Mt ′(s) ∈ RL×|S| stores the expected standard deviation of
the state s at iteration t ′. After L such iteration we use the value B0(s) to
estimate b(a|s) as follows:

b∗(a|s)∝
√
π2(a|s)

[
σ2(s,a)+γ2

∑
s ′

P(s ′|s,a)M2
0(s)

]
.

Note that for a terminal state swe have the transition probabilityP(s ′|s,a) =
0 and then the b(a|s) = π(a|s)σ(s,a). This iterative procedure follows
from the tree formulation in Theorem C.2 and is necessary in G to take into
account the multiple paths to a particular state. Algorithm 4 gives pseu-
docode for this procedure which takes inspiration from value-iteration for
the episodic setting.

Algorithm 4 Estimate B0(s) for G
1: Initialize BL(s) = 0 for all s ∈ S

2: for t ′ ∈ L− 1, . . . , 0 do
3: Bt ′(s) =

∑
a

(
π2(a|s)

(
σ2(s,a)

4: +γ2 ∑
s ′
P(s ′|s,a)B2

t ′+1(s)
))1

2

5: Return B0.

Finally, the safe algorithm in G can be stated as follows: At episode k

Play bk =


πe if Ẑk ⩾ 0,k ⩽

√
K

πb̂k if Ẑk ⩾ 0,k >
√
K

π0 if Ẑk < 0

(4.10)

where πb̂k for the episode k is defined as follows: For each time ℓ =

1, 2, . . . ,L sample action Akℓ = argmaxa
b̂k(a|sℓj)

Tkℓ (s
ℓ
j ,a)

, where b̂k(a|sℓj) is the
plug-in estimate of b∗(a|s

ℓ
j) that is obtained using Algorithm 4.
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4.7 Experiments

(a) Bandit setting (b) Movielens setting

(c) Tree MDP (d) Grid MDP

Figure 4.1: MSE in different settings. The vertical axis (log-scaled) gives
MSE and the horizontal axis is the number of episodes (or rounds for
bandits). Confidence bars show one standard error.

In this section, we show numerical experiments validating our theo-
retical results. The full experimental details and numerical results are
in Section C.6. We test the oracle, and SaVeR algorithm and introduce a
method that we call safe on-policy. The safe on-policy algorithm follows
the target policy πwhen the safety budget is positive and plays baseline
policy π0 when the safety budget is negative. We also test against the
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SEPEC (Wan et al., 2022) algorithm for the bandit setting which uses
importance sampling to safely collect data for policy evaluation. Note that
the bandit setting consists of a single state and every episode K consists
of a single time step L = 1. Figure 4.1 shows the MSE obtained by each
algorithm for a varying number of episodes. In Figure 4.2, we show that
all algorithms respect the constraint but that the oracle and SaVeR are not
excessively conservative.

Experiment 1 (Bandit): We implement a general bandit environment
withA = 11 and show that SaVeR achieves lower MSE than SEPEC and safe
on-policy algorithm as the number of rounds increases. The performance
is shown in Figure 4.1a. From Figure 4.2a we see that SaVeR, and oracle do
not oversample the safe action but allocate the right amount to be just safe.
They allocate more samples to reduce the MSE, whereas the safe on-policy
and SEPEC over-sample the safe action instead of focusing on reducing
the MSE.

Experiment 2 (Movielens): We conduct this experiment on the real-
life Movielens 1M dataset (Lam and Herlocker, 2016) for A = 30 actions
and show that SaVeR achieves lower MSE than safe on-policy and SEPEC
algorithm as the number of rounds increases. The performance is shown
in Figure 4.1b. From Figure 4.2b, we see that SaVeR and oracle SaVeR, and
the oracle do not oversample the safe action compared to SEPEC.

Experiment 3 (Tree): We experiment with a 4-depth 2-action deter-
ministic tree MDP consisting of 15 states. With increasing episodes SaVeR
reaches lower MSE than safe on-policy and eventually matches the oracle’s
MSE in Figure 4.1c. In Figure 4.2c the SaVeR and oracle run the baseline
policy almost similar number of times compared to the safe on-policy.

Experiment 4 (Gridworld): This setting consist of a 4× 4 stochastic
gridworld of 16 grid cells. We point out that Gridworld has a DAG structure
(due to the finite horizon) which violates the tree structure assumption
under which the oracle and SaVeR bounds were derived. Nevertheless,
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(a) Bandit violation (b) Movielens violation

(c) Tree MDP violation (d) Grid MDP violation

Figure 4.2: The vertical axis gives cumulative constraint violation and the
horizontal axis is the number of episodes/rounds. The 0-axis is shown in
pink. A safe algorithm has its plot below the 0-axis with the plot showing
the cumulative unsafe budget.

both SaVeR and oracle reach lower MSE with increasing episodes com-
pared to safe onpolicy in Figure 4.1d. We use (4.10) to estimate b̂ in this
setting. In Figure 4.2d we see that SaVeR allocates more samples to reduce
the MSE, whereas the safe on-policy runs the baseline policy more instead
of focusing on reducing the MSE.
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4.8 Conclusions and Future Directions
In this paper, we studied the question of how to take action to build a
dataset for minimal-variance policy evaluation of a fixed target policy
under a safety constraint (4.1). We developed a theoretical foundation for
data collection in policy evaluation by showing that there exists a class of
MDPs (namely tree-structured MDPs T) where safe policy evaluation is
intractable. We then showed the necessary condition for T to be tractable
such that the optimal behavior policy can collect data without violating
safety constraints. We then proved the first lower bound for this setting
under the tractability conditions that scales as Ω̃(n−3/2), where Ω̃ hides
log factors. We then introduced a practical algorithm, SaVeR, that approx-
imates the optimal behavior strategy by computing an upper confidence
bound on the variance of the cumulative cost in place of the true cost
variances in the optimal behavior strategy. We bound the finite-sample
regret (excess MSE) of SaVeR and show that it scales as Õ(n−3/2) match-
ing the lower bound. Hence, we answer both the questions raised in the
introduction positively. In the future, we would like to extend our deriva-
tion of optimal data collection strategies and regret analysis of SaVeR to
linear/contextual bandits and more general MDPs.
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Part III

Adaptive Data Collection for
Multi-task Learning
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5 multi-task representation learning for fixed
confidence pure exploration in bilinear bandits

Bilinear bandits (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022) are
an important class of sequential decision-making problems. In bilinear
bandits (as opposed to the standard linear bandit setting) we are given a
pair of arms xt ∈ Rd1 and zt ∈ Rd2 at every round t and the interaction
of this pair of arms with a low-rank hidden parameter, Θ∗ ∈ Rd1×d2

generates the noisy feedback (reward) rt = x⊤
t Θ∗zt+ηt. The ηt is random

1-subGaussian noise.
A lot of real-world applications exhibit the above bilinear feedback

structure, particularly applications that involve selecting pairs of items
and evaluating their compatibility. For example, in a drug discovery ap-
plication, scientists may want to determine whether a particular (drug,
protein) pair interacts in the desired way (Luo et al., 2017). Likewise,
an online dating service might match a pair of people and gather feed-
back about their compatibility (Shen et al., 2023a). A clothing website’s
recommendation system may suggest a pair of items (top, bottom) for a
customer based on their likelihood of matching (Reyes et al., 2021). In
all of these scenarios, the two items are considered as a single unit, and
the system must utilize available feature vectors (xt, zt) to learn which
features of the pairs are most indicative of positive feedback in order to
make effective recommendations. All the previous works in this setting
(Jun et al., 2019; Lu et al., 2021; Kang et al., 2022) exclusively focused on
maximizing the number of pairs with desired interactions discovered over
time (regret minimization). However, in many real-world applications
where obtaining a sample is expensive and time-consuming, e.g., clinical
trials (Zhao et al., 2009; Zhang et al., 2012), it is often desirable to identify
the optimal option using as few samples as possible, i.e., we face the pure
exploration scenario (Fiez et al., 2019; Katz-Samuels et al., 2020) rather
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than regret minimization.
Moreover, in various decision-making scenarios, we may encounter

multiple interrelated tasks such as treatment planning for different dis-
eases (Bragman et al., 2018) and content optimization for multiple websites
(Agarwal et al., 2009). Often, there exists a shared representation among
these tasks, such as the features of drugs or the representations of website
items. Therefore, we can leverage this shared representation to accelerate
learning. This area of research is called multi-task representation learning
and has recently generated a lot of attention in machine learning (Bengio
et al., 2013; Li et al., 2014; Maurer et al., 2016; Du et al., 2020; Tripuraneni
et al., 2021). There are many applications of this multi-task representation
learning in real-world settings. For instance, in clinical treatment planning,
we seek to determine the optimal treatments for multiple diseases, and
there may exist a low-dimensional representation common to multiple
diseases. To avoid the time-consuming process of conducting clinical
trials for individual tasks and collecting samples, we utilize the shared
representation and decrease the number of required samples.

The above multi-task representation learning naturally shows up in
bilinear bandit setting as follows: Let there be M tasks indexed as m =

1, 2, . . . ,Mwith each task having its own hidden parameter Θm,∗ ∈ Rd1×d2 .
Let each Θm,∗ has a decomposition of Θm,∗ = B1Sm,∗B⊤

2 , where B1 ∈
Rd1×k1 and B2 ∈ Rd2×k2 are shared across tasks, but Sm,∗ ∈ Rk1×k2 is
specific for task m. We assume that k1,k2 ≪ d1,d2 andM≫ d1,d2. Thus,
B1 and B2 provide a means of dimensionality reduction. Furthermore, we
assume that each Sm,∗ has rank r ≪ min{k1,k2}. In the terminology of
multi-task representation learning B1, B2 are called feature extractors and
xm,t, zm,t are called rich observations (Yang et al., 2020, 2022a; Du et al.,
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2023). The reward for the taskm ∈ {1, 2, . . . ,M} at round t is

rm,t = x⊤
m,tΘm,∗zm,t + ηm,t = x⊤

m,tB1︸ ︷︷ ︸
g⊤
m,t

Sm,∗ B⊤
2 zm,t︸ ︷︷ ︸
xm,t

+ηm,t

= g⊤
m,tSm,∗xm,t + ηm,t. (5.1)

Observe that similar to the learning procedure in Yang et al. (2020, 2022a),
at each round t = 1, 2, · · · , for each task m ∈ [M], the learner selects a
left and right action xm,t ∈ X and zm,t ∈ Z. After the player commits the
batch of actions for each task {xm,t, zm,t : m ∈ [M]}, it receives the batch
of rewards {rm,t : m ∈ [M]}. Also note that in (5.1) we define the g̃m,t ∈
Rk1 , ṽm,t ∈ Rk2 as the latent features, and both g̃m,t, ṽm,t are unknown
to the learner and needs to be learned for each task m (hence the name
multi-task representation learning).

In this paper, we focus on pure exploration for multi-task representa-
tion learning in bilinear bandits where the goal is to find the optimal left
arm xm,∗ and right arm zm,∗ for each taskm with a minimum number of
samples (fixed confidence setting). First, consider a single-task setting and
let Θ∗ have low rank r. Let the SVD of the Θ∗ = UDV⊤. Prima-facie, if U
and V are known then one might want to project all the left and right arms
in the r× r subspace of U and V and reduce the bilinear bandit problem
into a r2 dimension linear bandit setting. Then one can apply one of the
algorithms from Soare et al. (2014); Fiez et al. (2019); Katz-Samuels et al.
(2020) to solve this r2 dimensional linear bandit pure exploration problem.
Following the analysis of this line of work (in linear bandits) (Mason
et al., 2021; Mukherjee et al., 2022b, 2023a) one might conjecture that a
sample complexity bound of Õ(r2/∆2) is possible where∆ is the minimum
reward gap and Õ(·) hides log factors. Similarly, for the multi-task setting
one might be tempted to use the linear bandit analysis of Du et al. (2023)
to convert this problem into M concurrent r2 dimensional linear bandit
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problems with shared representation and achieve a sample complexity
bound of Õ(Mr2/∆2). However, these matrices (subspaces) are unknown
and so there is a model mismatch as noted in the regret analysis of bilinear
bandits (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022). Thus it is diffi-
cult to apply the r2 dimensional linear bandit sample complexity analysis.
Following the regret analysis of bilinear bandit setting by Jun et al. (2019);
Lu et al. (2021); Kang et al. (2022) we know that the effective dimension is
actually (d1 +d2)r. Similarly for the multi-task representation learning the
effective dimension should scale with the learned latent features (k1 +k2)r.
Hence the natural questions to ask are these:

1) Can we design a single-task pure exploration bilinear bandit algorithm
whose sample complexity scales as Õ((d1 + d2)r/∆

2)?

2) Can we design an algorithm for multi-task pure exploration bi-
linear bandit problem that can learn the latent features and has sample
complexity that scales as Õ(M(k1 + k2)r/∆

2)?

In this paper, we answer both these questions affirmatively. In doing
so, we make the following novel contributions to the growing literature of
multi-task representation learning in online settings:

1) We formulate the multi-task bilinear representation learning prob-
lem. To our knowledge, this is the first work that explores pure exploration
in a multi-task bilinear representation learning setting.

2) We proposed the algorithm GOBLIN for a single-task pure explo-
ration bilinear bandit setting whose sample complexity scales as Õ((d1 +

d2)r/∆
2). This improves over RAGE (Fiez et al., 2019) whose sample com-

plexity scales as Õ((d1d2)/∆
2).

3) Our algorithm GOBLIN for multi-task pure exploration bilinear
bandit problem learns the latent features and has sample complexity that
scales as Õ(M(k1 + k2)r/∆

2). This improves over DouExpDes (Du et al.,
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2023) whose samples complexity scales as Õ(M(k1k2)/∆
2).

5.1 Preliminaries
Preliminaries: We assume that ∥x∥2 ⩽ 1, ∥z∥2 ⩽ 1, ∥Θ∗∥F ⩽ S0 and
the r-th largest singular value of Θ∗ ∈ Rd1×d2 is Sr. Let p := d1d2 de-
note the ambient dimension, and k = (d1 + d2)r denote the effective
dimension. Let [n] := {1, 2, . . . ,n}. Let x∗, z∗ := argmaxx,z x⊤Θ∗z. For
any x, z define the gap ∆(x, z) := x⊤

∗ Θ∗z∗ − x⊤Θ∗z and furthermore
∆ = minx ̸=x∗,z̸=z∗ ∆(x, z). Similarly, for any arbitrary vector w ∈W define
the gap of w ∈ Rp as∆(w) := (w∗ − w)⊤ θ∗, for some θ∗ ∈ Rp and further-
more, ∆ = minw ̸=w∗ ∆(w). If A ∈ Rd×d⩾0 is a positive semidefinite matrix,
and w ∈ Rp is a vector, let ∥w∥2

A := w⊤Aw denote the induced semi-norm.
Given any vector b ∈ R|W| we denote the w-th component as bw. Let
∆W :=

{
b ∈ R|W| : bw ⩾ 0,

∑
w∈W bw = 1

}
denote the set of probability

distributions on W. We define Y(W) = {w − w′ : ∀w, w′ ∈W, w ̸= w′} as
the directions obtained from the differences between each pair of arms
and Y∗(W) = {w∗ − w : ∀w ∈W\w∗} as the directions obtained from the
differences between the optimal arm and each suboptimal arm.

5.2 Pure Exploration in Single-Task Bilinear
Bandits

In this section, we consider pure exploration in a single-task bilinear bandit
setting as a warm-up to the main goal of learning representations for the
multi-task bilinear bandit. To our knowledge, this is the first study of
pure exploration in single-task bilinear bandits. We first recall the single-
task bilinear bandit setting as follows: At every round t = 1, 2, . . . the
learner observes the reward rt = x⊤

t Θ∗zt + ηt where the low rank hidden
parameter Θ∗ ∈ Rd1×d2 is unknown to the learner, xt ∈ Rd1 , zt ∈ Rd2 are
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visible to the learner, and ηt is a 1-sub-Gaussian noise. We assume that the
matrix Θ∗ has a low rank r which is known to the learner and d1,d2 ≫ r.
Finally recall that the goal is to identify the optimal left and right arms
x∗, z∗ with a minimum number of samples.

We propose a phase-based, two-stage arm elimination algorithm called
G-Optimal Design for Bilinear Bandits (abbreviated as GOBLIN). GOB-
LIN proceeds in phases indexed by ℓ = 1, 2, . . . As this is a pure-exploration
problem, the total number of samples is controlled by the total phases
which depends on the intrinsic problem complexity. Each phase ℓ of GOB-
LIN consists of two stages; the estimation of Θ∗ stage, which runs for
τEℓ rounds, and pure exploration in rotated arms stage that runs for τGℓ
rounds. We will define τEℓ in Section 5.2, while rotated arms and τGℓ are
defined in Section 5.2. At the end of every phase, GOBLIN eliminates
sub-optimal arms to build the active set for the next phase and stops when
only the optimal left and right arms are remaining. Now we discuss the
individual stages that occur at every phase ℓ of GOBLIN.

Estimating Subspaces of Θ∗ (Stage 1 of the ℓ-th phase)

In the first stage of phase ℓ, GOBLIN estimates the row and column sub-
spaces Θ∗. Then GOBLIN uses these estimates to reduce the bilinear
bandit problem in the original ambient dimension p := d1d2 to a lower
effective dimension k := (d1 + d2)r. To do this, GOBLIN first vectorizes
the x ∈ Rd1 , z ∈ Rd2 into a new vector w ∈ Rp and then solves the E-
optimal design in Step 3 of Algorithm 5 (Pukelsheim, 2006; Jun et al., 2019;
Du et al., 2023). Let the solution to the E-optimal design problem at the
stage 1 of ℓ-th phase be denoted by bEℓ . Then GOBLIN samples each w for
⌈τEℓ bEℓ,w⌉ times, where τEℓ = Õ(

√
d1d2r/Sr) (step 7 of Algorithm 5). In this

paper, we sample an arm ⌈τEℓ bEℓ,w⌉ number of times. However, this may
lead to over-sampling of an arm than what the design (G or E-optimal) is
actually suggesting. However, we can match the number of allocations of
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an arm to the design using an efficcient Rounding Procedures (see Pukelsheim
(2006); Fiez et al. (2019)). Let Θ̂ℓ be estimate of Θ∗ in stage 1 of phase ℓ.
GOBLIN estimates this by solving the following well-defined regularized
minimization problem with nuclear norm penalty:

Θ̂ℓ = argmin
Θ∈Rd1×d2

Lℓ(Θ) + γℓ∥Θ∥nuc, Lℓ(Θ) = ⟨Θ,Θ⟩− 2
τEℓ

τEℓ∑
s=1

⟨ψ̃ν(rs ·Q(xsz⊤
s )),Θ⟩

(5.2)

where Q(·), ψ̃ν(·), are appropriate functions stated in Theorem D.5, D.7
respectively in Section D.3. The Q(·) function takes as input the rank-one
matrix xsz⊤

s which is obtained after reshaping ws. Note that xs, and zs are
the observed vectors in d1 and d2 dimension and Θ̂ℓ ∈ Rd1×d2 Finally, set

the regularization parameter γℓ := 4
√

2(4+S2
0)Cd1d2 log(2(d1+d2)/δ)

τEℓ
. This is in

step 8 of Algorithm 5.

Optimal Design for Rotated Arms (Stage 2 of ℓ-th phase)

In stage 2 of phase ℓ, GOBLIN leverages the information about the learned
sub-space of Θ∗ to rotate the arm set and then run the optimal design on
the rotated arm set. Once we recover Θ̂ℓ, one might be tempted to run
a pure exploration algorithm (Soare et al., 2014; Fiez et al., 2019; Katz-
Samuels et al., 2020; Zhu et al., 2021) to identify x∗ and z∗. However, then
the sample complexity will scale with d1d2. In contrast GOBLIN uses the
information about the learned sub-space of Θ∗ to reduce the problem from
ambient dimension d1d2 to effective dimension (d1 + d2)r. This reduction
is done as follows: Let Θ̂ℓ = ÛℓD̂ℓV̂⊤

ℓ be the SVD of Θ̂ℓ in the ℓ-th phase.
Let Ûℓ⊥ and V̂ℓ⊥ be orthonormal bases of the complementary subspaces of
Ûℓ and V̂ℓ respectively. Let Xℓ and Zℓ be the active set of arms in the stage
2 of phase ℓ. Then rotate the arm sets such that new rotated arm sets are
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as follows:

Xℓ = {x = [ÛℓÛ⊥
ℓ ]

⊤x | x ∈ Xℓ},Zℓ = {z = [V̂ℓV̂⊥
ℓ ]

⊤z | z ∈ Zℓ}. (5.3)

Let Ĥℓ = [ÛℓÛ⊥
ℓ ]

⊤Θ̂ℓ[V̂ℓV̂⊥
ℓ ]. Then define vectorized arm set so that the

last (d1 − r) · (d2 − r) components are from the complementary subspaces
as follows:

Wℓ =
{[

vec
(
x1:rz⊤

1:r
)

; vec
(
xr+1:d1

z⊤
1:r
)

; vec
(
x1:rz⊤

r+1:d2

)
;

vec
(
xr+1:d1

z⊤
r+1:d2

)]
∈ Rd1d2 : x ∈ Xℓ, z ∈ Zℓ

}
θ̂ℓ,1:k = [vec(Ĥℓ,1:r,1:r); vec(Ĥℓ,r+1:d1,1:r); vec(Ĥℓ,1:r,r+1:d2)],

θ̂ℓ,k+1:p = vec(Ĥℓ,r+1:d1,r+1:d2). (5.4)

which implies ∥θ̂k+1:p∥2 = O
(
d1d2r/τ

E
ℓ

)
by Theorem D.3 in Section D.1.

So the last p − k components of θ̂ℓ are very small compared to the first
k components. Hence, GOBLIN has now reduced the d1d2 dimensional
linear bandit to (d1 + d2)r dimensional linear bandit using (5.3), (5.4).
This is shown in step 10 of Algorithm 5.

Now in stage 2 of phase ℓ, GOBLIN implements G-optimal design
(Pukelsheim, 2006; Fiez et al., 2019) in the rotated arm set Xℓ,Zℓ defined in
(5.3). To do this, first GOBLIN defines the rotated vector w = [x1:d1

; z1:d2
] ∈

Rp that belong to the set Wℓ. Then GOBLIN solves the G-optimal design
(Pukelsheim, 2006) as follows:

b̂Gℓ = argmin
bw

max
w,w ′∈Wℓ

∥w − w ′∥2
(
∑

w∈W bww w⊤+Λℓ/n)−1 . (5.5)

This is shown in step 11 of Algorithm 5 and Λℓ is defined in (5.6). It
can be shown that sampling according to b̂Gℓ leads to the optimal sample
complexity. This is discussed in Theorem D.4 in Section D.2. The key
point to note from (5.5) is that due to the estimation in the rotated arm
space Wℓ we are guaranteed that the support of supp(b̂Gℓ ) ⩽ Õ(k(k+1)/2)
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(Pukelsheim, 2006). On the other hand, if the G-optimal design of Fiez
et al. (2019); Katz-Samuels et al. (2020) are run in d1d2 dimension then
the support of b̂Gℓ will scale with d1d2 which will lead to higher sample
complexity. Then GOBLIN samples each w ∈ Wℓ for ⌈τGℓ bGℓ,w⌉ times,
where τGℓ := ⌈8Bℓ∗ρG(Y(Wℓ)) log(4ℓ2|W|/δ)

ϵ2
ℓ

⌉. Note that the total length of phase
ℓ, combining stages 1 and 2 is (τEℓ + τGℓ ) rounds. Observe that the stage 1
design is on the whole arm set W whereas stage 2 design is on the refined
active set Wℓ.

Let the observed features in stage 2 of phase ℓ be denoted by Wℓ ∈
RτGℓ ×p, and rℓ ∈ RτGℓ be the observed rewards. Define the diagonal matrix
Λℓ as

Λℓ = diag[λ, . . . , λ︸ ︷︷ ︸
k

, λ⊥ℓ , . . . , λ⊥ℓ︸ ︷︷ ︸
p−k

] (5.6)

where, λ⊥ℓ := τGℓ−1/8k log(1 + τGℓ−1/λ) ≫ λ. Deviating from Soare et al.
(2014); Fiez et al. (2019) GOBLIN constructs a regularized least square
estimator at phase ℓ as follows

θ̂ℓ = argmin
θ∈Rp

1
2∥Wℓθ− rℓ∥2

2 +
1
2∥θ∥

2
Λℓ

. (5.7)

This regularized least square estimator in (5.7) forces the last p− k com-
ponents of θ̂ℓ to be very small compared to the first k components. Then
GOBLIN builds the estimate θ̂ℓ from (5.7) only from the observations
from this phase (step 13 in Algorithm 5) and eliminates sub-optimal ac-
tions in step 14 in Algorithm 5 using the estimator θ̂ℓ. Finally GOBLIN
eliminates sub-optimal arms to build the next phase active set Wℓ and
stops when |Wℓ| = 1. GOBLIN outputs the arm in Wℓ and reshapes it to
get the x̂∗ and ẑ∗. The full pseudocode is presented in Algorithm 5.



105

Algorithm 5 G-Optimal Design for Bilinear Bandits (GOBLIN) for single-
task setting

1: Input: arm set X,Z, confidence δ, rank r of Θ∗, spectral bound Sr of
Θ∗, S,S⊥ℓ := 8d1d2r

τEℓ S
2
r

log
(
d1+d2
δℓ

)
, λ, λ⊥ℓ := τGℓ−1/8(d1 + d2)r log(1 + τGℓ−1

λ
).

Let p := d1d2, k := (d1 + d2)r.
2: LetW1←W, ℓ← 1, τG0 := log(4ℓ2|X|/δ). Define Λℓ as in (5.6), Bℓ∗ :=

(8
√
λS+

√
λ⊥ℓ S

⊥
ℓ ).

3: Define a vectorized arm w := [x1:d1 ; z1:d2 ] and w ∈ W. Let
τEℓ :=

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr
. Let the E-optimal design be bEℓ :=

argminb∈△W

∥∥(∑
w∈W bww w⊤)−1∥∥.

4: while |Wℓ| > 1 do
5: ϵℓ = 2−ℓ, δℓ = δ/ℓ2.
6: (Stage 1:) Explore the Low-Rank Subspace
7: Pull arm w ∈ W exactly

⌈
b̂Eℓ,wτ

E
ℓ

⌉
times and observe rewards rt,

for t = 1, . . . , τEℓ .
8: Compute Θ̂ℓ using (5.2).
9: (Stage 2:) Reduction to low dimensional linear bandits

10: Let the SVD of Θ̂ℓ = ÛℓD̂ℓV̂⊤
ℓ . Rotate arms in active set Wℓ−1 to

build Wℓ following (5.4).
11: Let b̂Gℓ := argminbw maxw,w ′∈Wℓ

∥w − w ′∥2
(
∑

w∈W bww w⊤+Λℓ/n)−1 .
12: Define ρG(Y(Wℓ)) := minbw maxw,w ′∈Wℓ

∥w −
w ′∥2

(
∑

w∈W bww w⊤+Λℓ/n)−1 .

13: Set τGℓ :=⌈
64Bℓ∗ρG(Y(Wℓ)) log(4ℓ2|W|/δℓ)

ϵ2
ℓ

⌉. Then pull arm w ∈W exactly⌈
b̂Gℓ,wτ

G
ℓ

⌉
times and construct the least squares estimator θ̂ℓ using

only the observations of this phase where θ̂ℓ is defined in (5.7).
Note that θ̂ℓ is also rotated following (5.4).

14: Eliminate arms such that Wℓ+1 ← Wℓ\{w ∈ Wℓ : maxw′∈Wℓ
⟨w′ −

w, θ̂ℓ⟩ > 2ϵℓ}
15: ℓ← ℓ+ 1
16: Output the arm in Wℓ and reshape to get the x̂∗ and ẑ∗
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Sample Complexity Analysis of Single-Task GOBLIN

We now analyze the sample complexity of GOBLIN in the single-task
setting through the following theorem.

Theorem 1. (informal) With probability at least 1−δ, GOBLIN returns the best
arms x∗, z∗, and the number of samples used is bounded by Õ

(
(d1+d2)r
∆2 +

√
d1d2r
Sr

)
.

Discussion 1. In Theorem 1 the first quantity is the number of samples
needed to identify the best arms x∗, z∗ while the second quantity is the
number of samples to learn Θ∗ (which is required to find the best arms).
Note that the magnitude of Sr would be free of d1,d2 since Θ∗ contains
only r nonzero singular values and ∥Θ∗∥ ⩽ 1, and hence we assume that
Sr = Θ(1/

√
r) (Kang et al., 2022). So the sample complexity of single-task

GOBLIN scales as Õ( (d1+d2)r
∆2 ). However, if one runs RAGE (Fiez et al.,

2019) on the arms in X,Z then the sample complexity will scale as Õ(d1d2
∆2 ).

Proof (Overview) of Theorem 1: Step 1 (Subspace estimation in
high dimension): We denote the vectorized arms in high dimension as
w ∈W. We run the E-optimal design to sample the arms in W. Note that
this E-optimal design satisfies the distribution assumption of Kang et al.
(2022) which enables us to apply the Theorem D.3 in Section D.1. This
leads to ∥Θ̂ℓ −Θ∗∥2

F ⩽
C1d1d2r log(2(d1+d2)/δ)

τEℓ
for some C1 > 0. Also, note

that in the first stage of the ℓ-th phase by setting τEℓ =

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr

and sampling each arm w ∈W exactly ⌈b̂Eℓ,wτEℓ ⌉ times we are guaranteed
that ∥θ∗

k+1:p∥2 = O(d1d2r/τ
E
ℓ ). Summing up over ℓ = 1 to

⌈
log2

(
4∆−1)⌉

we get that the total sample complexity of the first stage is bounded by
Õ(
√
d1d2r/Sr).

Step 2 (Effective dimension for rotated arms): We rotate the arms
w ∈ W in high dimension to get the rotated arms w ∈ Wℓ in step 10
of Algorithm 5. Then we show that the effective dimension of w scales
8k log

(
1 + τGℓ−1/λ

)
when λ⊥ℓ =

τGℓ−1
8k log(1+τGℓ−1/λ)

in Theorem D.11 of Sec-
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tion D.4. Note that this requires a different proof technique than Valko
et al. (2014) where the budget n is given apriori and effective dimension
scales with log(n). This step also diverges from the pure exploration proof
technique of Fiez et al. (2019); Katz-Samuels et al. (2020) as there is no
parameter λ⊥ℓ to control during phase ℓ, and the effective dimensions in
those papers do not depend on phase length.

Step 3 (Bounded Support): For any phase ℓ, we can show that 1 ⩽

ρG(Y(Wℓ)) ⩽ p/γ2
Y where, γY = max{c > 0 : cY ⊂ conv(W ∪ −W)} is

the gauge norm of Y (Rockafellar, 2015). Note that this is a worst-case
dependence when ρG(Y(Wℓ)) scales with p. Substituting this value of
ρG(Y(Wℓ)) in the definition of λ⊥ℓ we can show that Λℓ does not depend on
w or y = w−w ′. Then following Theorem 21.1 in Lattimore and Szepesvári
(2020a) we can show that the G-optimal design b̂Gℓ is equivalent to D-
optimal design b̂Dℓ = argmaxb log |

∑
w∈Wℓ

bww w⊤+Λℓ|
|Λℓ|

. Then using Frank-
Wolfe algorithm (Jamieson and Jain, 2022) we can show the support b̂Gℓ
or equivalently b̂Dℓ is bounded by at most 8k log(1+τGℓ−1/λ)(8k log(1+τGℓ−1/λ)+1)

2 .
This is shown in Theorem D.13 (Section D.4).

Step 4 (Phase length and Elimination): Using the Theorem D.13,
concentration Theorem D.9, and using the log determinant inequality in
Theorem D.11 and Proposition 1 (Section D.4) we show that the phase
length in the second stage is given by τGℓ = ⌈8Bℓ∗ρ(Y(Wℓ)) log(2|W|/δ)

(x⊤(θ̂ℓ−θ∗))2 ⌉. This
is discussed in Discussion 3 (Section D.4). We show in Theorem D.14
(Section D.4) that setting this phase length and sampling each active arm
in Wℓ exactly ⌈b̂ℓ,wτGℓ ⌉ times results in the elimination of sub-optimal
actions with high probability.

Step 5 (Total Samples): We first show that the total samples in the
second phase are bounded by O( k

γ2
Y

log(k log2(∆
−1)|W|

δ
)⌈log2(∆

−1)⌉) where
the effective dimension k = (d1 + d2)r. Finally, we combine the total
samples of phase ℓ as (τEℓ + τGℓ ). The final sample complexity is given by
summing over all phases from ℓ = 1 to

⌈
log2

(
4∆−1)⌉. The claim of the
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theorem follows by noting Õ(k/γ2
Y) ⩽ Õ(k/∆

2).

5.3 Multi-task Representation Learning
In this section, we extend GOBLIN to multi-task representation learning for
the bilinear bandit setting. In the multi-task setting, we now haveM tasks,
where each taskm ∈ [M] has a reward model stated in (5.1). The learning
proceeds as follows: At each round t = 1, 2, · · · , for each task m ∈ [M],
the learner selects a left and right action xm,t ∈ X and zm,t ∈ Z. After the
player commits the batch of actions for each task {xm,t, zm,t : m ∈ [M]}, it
receives the batch of rewards {rm,t : m ∈ [M]}. Finally recall that the goal
is to identify the optimal left and right arms xm,∗, zm,∗ for each taskmwith
a minimum number of samples. We now state the following assumptions
to enable representation learning across tasks.

Assumption 7. (Low-rank Tasks) We assume that the hidden parameter
Θm,∗ for all the m ∈ [M] have a decomposition Θm,∗ = B1Sm,∗B⊤

2 and each
Sm,∗ has rank r.

This is similar to the assumptions in Yang et al. (2020, 2022a); Du
et al. (2023) ensuring the feature extractors are shared across tasks in the
bilinear bandit setting.

Assumption 8. (Diverse Tasks) We assume that σmin(
1
M

∑M
m=1 Θm,∗) ⩾

c0
Sr

,
for some c0 > 0, Sr is the r-th largest singular value of Θm,∗ and σmin(A) denotes
the minimum eigenvalue of matrix A.

This assumption is similar to the diverse tasks assumption of Yang et al.
(2020, 2022a); Tripuraneni et al. (2021); Du et al. (2023) and ensures the
possibility of recovering the feature extractors B1 and B2 shared across
tasks.

Our extension of GOBLIN to the multi-task setting is now a phase-
based, three-stage arm elimination algorithm. In GOBLIN each phase
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ℓ = 1, 2, . . . consists of three stages; the first stage for estimation of feature
extractors B1, B2, which runs for τEℓ rounds, the second stage for estima-
tion of Sm,∗ which runs for

∑
m τ̃

E
m,ℓ rounds, and a third stage of pure

exploration with rotated arms that runs for
∑
m τ

G
m,ℓ rounds. We will

define τEm,ℓ in Section 5.3, τ̃Em,ℓ in Section 5.3, while the rotated arms and
τGm,ℓ are defined in Section 5.3. At the end of every phase, GOBLIN elimi-
nates sub-optimal arms to build the active set for the next phase and stops
when only the optimal left and right arms are remaining. Now we discuss
the individual stages that occur at every phase ℓ = 1, 2, . . . for multi-task
GOBLIN.

Estimating Feature Extractors B1 and B2 (Stage 1 of Phase ℓ)

In the first stage of phase ℓ, GOBLIN leverages the batch of rewards
{rm,t : m ∈ [M]} at every round t from M tasks to learn the feature ex-
tractors B1 and B2. To do this, GOBLIN first vectorizes the x ∈ X, z ∈ Z

into a new vector w = [x1:d1 ; z1:d2 ] ∈ Wm and then solves the E-optimal
design in step 3 of Algorithm 6. Similar to the single-task setting (Sec-
tion 5.2) GOBLIN samples each w ∈Wm for ⌈τEℓ bEℓ,w⌉ times for each task
m, where τEℓ = Õ(

√
d1d2r/Sr) and bEℓ,w is the solution to E-optimal design

on w. Let the sampled arms for each taskm at round s be denoted by xm,s,
zm,s which is obtained after reshaping ws. Then it builds the estimator Ẑℓ
as follows:

Ẑℓ = argmin
Θ∈Rd1×d2

Lℓ(Θ) + γℓ∥Θ∥nuc,

Lℓ(Θ) = ⟨Θ,Θ⟩− 2
MτEℓ

M∑
m=1

τEℓ∑
s=1

⟨ψ̃ν(rm,s ·Q(xm,sz⊤
m,s)),Θ⟩ (5.8)

where ψ̃ is defined in Theorem D.7 and score function Q is defined in
Theorem D.5. Then it performs SVD decomposition on Ẑℓ, and let B̂1, B̂2
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be the top-k1 and top-k2 left and right singular vectors of Ẑℓ respectively.
These are the estimation of the feature extractors B1 and B2.

Estimating Hidden Parameter Sm,∗ per Task (Stage 2 of
phase ℓ)

In the second stage of phase ℓ, the goal is to recover the hidden parameter
Sm,∗ for each taskm. GOBLIN proceeds as follows: First, let g̃m = x⊤B̂1,ℓ

and ṽm = z⊤B̂2,ℓ be the latent left and right arm respectively for eachm.
Then GOBLIN defines the vector w̃ = [g̃m; ṽm] ∈ W̃m and then solves
the E-optimal design in step 11 of Algorithm 6. It then samples for each
task m, the latent arm w̃ ∈ W̃m for ⌈τ̃Em,ℓb̃Em,ℓ,w̃⌉ times, where τ̃Em,ℓ :=

Õ(
√
k1k2r/Sr) and b̃Em,ℓ,w̃ is the solution to E-optimal design on w̃. Then

it builds estimator Ŝm,ℓ for each taskm in step 12 as follows:

Ŝm,ℓ = argmin
Θ∈Rk1×k2

L ′
ℓ(Θ) + γℓ∥Θ∥nuc,

L ′
ℓ(Θ) = ⟨Θ,Θ⟩− 2

τ̃Em,ℓ

τ̃Em,ℓ∑
s=1

⟨ψ̃ν(rm,s ·Q(g̃m,sṽ⊤
m,s)),Θ⟩ (5.9)

Once GOBLIN recovers the Ŝm,ℓ for each taskm it has reduced the d1d2

bilinear bandit to a k1k2 dimension bilinear bandit where the left and right
arms are g̃m ∈ Gm, ṽm ∈ Vm respectively.

Optimal Design for Rotated Arms per Task (Stage 3 of
phase ℓ)

In the third stage of phase ℓ, similar to Algorithm 5, the multi-task GOBLIN
defines the rotated arm set G

m
,Vm for each taskm for these k1k2 dimen-

sional bilinear bandits. Let the SVD of Ŝm,ℓ = Ûm,ℓD̂m,ℓV̂⊤
m,ℓ. Define

Ĥm,ℓ = [Ûm,ℓÛ⊥
m,ℓ]

⊤Ŝm,ℓ[V̂m,ℓV̂⊥
m,ℓ]. Then define the vectorized arm set so
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that the last (k1 − r) · (k2 − r) components are from the complementary
subspaces as follows:

Wm,ℓ =
{[

vec
(
g̃m,1:rṽ⊤

m,1:r
)

; vec
(
g̃m,r+1:k1ṽ⊤

m,1:r
)

; vec
(
g̃m,1:rṽ⊤

m,r+1:k2

)
;

vec
(
g̃m,r+1:k1ṽ⊤

m,r+1:k2

)]}
θ̂m,ℓ,1:k = [vec(Ĥm,ℓ,1:r,1:r); vec(Ĥm,ℓ,r+1:k1,1:r); vec(Ĥm,ℓ,1:r,r+1:k2)],

θ̂m,ℓ,k+1:p = vec(Ĥm,ℓ,r+1:k1,r+1:k2). (5.10)

This is shown in step 14 of Algorithm 6. Now we proceed similarly to
Section 5.2. We construct a per-task optimal design for the rotated arm set
Vm,G

m
and define the w = [g̃m,1:d1 ; ṽm,1:d2 ] and w̃ ∈ W̃m where g̃m ∈ G

m

and ṽm ∈ Vm respectively. Following (5.5) we know that to minimize
the sample complexity for the m-th bilinear bandit we need to sample
according to G-optimal design

b̂Gm,ℓ = argmin
bm,w

max
w,w ′∈Wm,ℓ

∥w − w ′∥2
(
∑

w∈Wm
bm,ww w⊤+Λm,ℓ/n)−1 (5.11)

Then GOBLIN runs G-optimal design on the arm set Wm,ℓ following the
(5.11) and then samples each w ∈ Wm,ℓ for ⌈τGm,ℓb̂

G
m,ℓ,w⌉ times where

b̂Gm,ℓ,w is the solution to the G-optimal design, and τGℓ is defined in step
17 of Algorithm 6. So the total length of phase ℓ, combining stages 1, 2
and 3 is (τEℓ +

∑
m τ̃

E
m,ℓ+

∑
m τ

G
m,ℓ) rounds. Observe that the stage 1 and 2

design is on the whole arm set W, W̃m whereas the stage 3 design is on the
refined active set Wm,ℓ. Let at the stage 3 of ℓ-th phase the actions sampled
be denoted by the matrix Wm,ℓ ∈ RτGm,ℓ×k1k2 and observed rewards rm ∈
RτGm,ℓ×k1k2 . Define the positive diagonal matrix Λm,ℓ according to (5.6) but
set p = k1k2 and k = (k1 + k2)r. Then similar to Section 5.2 we can build
for each taskm only from the observations from this phase

θ̂m,ℓ = arg min
θ

1
2∥Wm,ℓθ− rm∥2

2 +
1
2∥θ∥

2
Λm,ℓ

(5.12)
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Finally GOBLIN eliminates the sub-optimal arms using the estimator θ̂m,ℓ

to build the next phase active set Wm,ℓ and stops when |Wm,ℓ| = 1. The
full pseudo-code is given in Algorithm 6.

Sample Complexity analysis of Multi-task GOBLIN

We now present the sample complexity of GOBLIN for the multi-task
setting.

Theorem 2. (informal) With probability at least 1 − δ, GOBLIN returns the
best arms xm,∗, zm,∗ for each task m, and the total number of samples is bounded
by Õ

(
M(k1+k2)r

∆2 + M
√
k1k2r
Sr

+
√
d1d2r
Sr

)
.

Discussion 2. In Theorem 2 the first quantity is the sample complexity to
identify the best arms xm,∗, zm,∗ and the second quantity is the number of
samples to learn Sm,∗ for each taskm. This is required to rotate the arms
to reach the effective dimension of (k1 + k2)r. Finally, the third quantity
is the number of samples needed to learn Θm,∗ (which in turn is used
to estimate the feature extractors B1 and B2 to learn the Sm,∗). Again we
assume that Sr = Θ(1/

√
r) (Kang et al., 2022). So the sample complexity

of multi-task GOBLIN scales as Õ(M(k1 + k2)r/∆
2). However, if one runs

DouExpDes (Du et al., 2023) then the sample complexity will scale as
Õ(M(k1k2)/∆

2) which is worse than GOBLINwhen r≪ k1 or k2.

Proof (Overview) of Theorem 2: Step 1 (Subspace estimation in high
dimension): The first steps diverge from the proof technique of Theorem 1.
We now build the average estimator Ẑℓ to estimate the quantity Z∗ =

1
M

∑M
m=1 Θ∗,m using (5.8). This requires us to modify the Theorem D.3

in Section D.1 and apply Stein’s lemma (Theorem D.1) to get a bound
of ∥Ẑℓ − Z∗∥2

F ⩽ C1d1d2r log(2(d1+d2)/δ)

τEℓ
for some C1 > 0. This is shown in

Theorem D.18 in Section D.5. Summing up over ℓ = 1 to
⌈
log2

(
4∆−1)⌉

we get that the total samples complexity of the first stage is bounded by
Õ(
√
d1d2r/Sr).
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Algorithm 6 G-Optimal Design for Bilinear Bandits (GOBLIN) for multi-
task setting
1: Input: arm set X,Z, confidence δ, rank r of Θ∗, spectral bound Sr of Θ∗, S,S⊥m,ℓ =

8k1k2r
τ̃Em,ℓS

2
r

log(k1+k2
δℓ

), λ, λ⊥m,ℓ=
τGm,ℓ−1

(8(k1+k2)r log(1+τGm,ℓ−1/λ))
. Let p = k1k2, k = (k1 + k2)r.

2: Let Wm,1←Wm, ℓ← 1, τG0 = log(4ℓ2|X|/δ). Define Λm,ℓ as in (5.6), Bℓm,∗:= (8
√
λS+√

λ⊥m,ℓS
⊥
m,ℓ)

3: Define arm w = [xm,1:d1 ; zm,1:d2 ] and w ∈ Wm. Let τEℓ =

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr
. Let

E-optimal design be bEℓ =argminb∈△Wm

∥∥(∑w∈Wm
bww w⊤)−1

∥∥.
4: while ∃m ∈ [M],

∣∣Wm,ℓ
∣∣ > 1 do

5: ϵℓ = 2−ℓ, δℓ = δ/ℓ2.
6: (Stage 1:) Explore the Low-Rank Subspace
7: Pull arm w ∈ Wm exactly ⌈b̂Eℓ,wτEℓ ⌉ times for each task m and observe rewards

{rm,t}
τEℓ
t=1.

8: Compute Ẑℓ using (5.8).
9: (Stage 2:) Build Ŝm,ℓ for each taskm

10: Let B̂1,ℓ, B̂2,ℓ be the top-k1 left and top-k2 right singular vectors of Ẑℓ respectively.
Build g̃m = x⊤B̂1,ℓ and ṽm = z⊤B̂2,ℓ for all x ∈ X and z ∈ Z for eachm.

11: Define a vectorized arm w̃ = [g̃m,1:k1 ; ṽm,1:k2 ] and w̃ ∈ W̃m for eachm. Let τ̃Em,ℓ=√
8k1k2r log(4ℓ2|W|/δℓ)

Sr
, and b̃Em,ℓ = argminbm∈△

W̃m

∥∥(∑
w̃∈W̃m

bm,w̃w̃ w̃⊤)−1∥∥.

12: Pull arm w̃ ∈ W̃m exactly
⌈

b̃Em,ℓ,w̃τ̃
E
m,ℓ

⌉
times and observe rewards rm,t, for

t = 1, . . . , τ̃Em,ℓ, for each taskm. Then compute Ŝm,ℓ using (5.9) for eachm.
13: (Stage 3:) Reduction to low dimensional linear bandits for each taskm
14: SVD of Ŝm,ℓ=Ûm,ℓD̂m,ℓV̂⊤

m,ℓ. Rotate arms in active set Wm,ℓ−1 to build Wm,ℓ
using (5.10).

15: Let b̂Gm,ℓ=argminbm,w maxw,w′∈Wm,ℓ ∥w − w ′∥2
(
∑

wm∈Wm
bm,wwm w⊤

m+Λm,ℓ/n)−1 .
16: Let ρG(Y(Wm,ℓ))=min

bm,w
max

w,w′∈Wm,ℓ
∥w−w ′∥2

(
∑

w∈Wm
bm,ww w⊤+

Λm,ℓ
n

)−1
.

17: Set τGm,ℓ=
64Bℓ

m,∗ρ
G(Y(Wm,ℓ)) log(4ℓ2|Wm|/δℓ)

ϵ2
ℓ

. Then pull arm w ∈Wm for each taskm
exactly ⌈b̂m,ℓ,wτ

G
m,ℓ⌉ times and construct the least squares estimator θ̂m,ℓ using

only the observations of this phase where θ̂m,ℓ is defined in (5.12).
18: Eliminate arms such that Wm,ℓ+1 ←

Wm,ℓ\
{

wm ∈Wm,ℓ : maxw′
m∈Wm,ℓ

〈
w′
m − wm, θ̂m,ℓ

〉
> 2ϵm,ℓ

}
19: ℓ← ℓ+ 1
20: Output the arm in Wm,ℓ and reshape to get the x̂m,∗ and ẑm,∗ for each taskm.
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Step 2 (Estimation of left and right feature extractors): Now using
the estimator in (5.8) we get a good estimation of the feature extractors B1

and B2. Let B̂1,ℓ, B̂2,ℓ be the top-k1 left and top-k2 right singular vectors of
Ẑℓ respectively. Then using the Davis-Kahan sin θ Theorem (Bhatia, 2013)
in Theorem D.20, D.21 (Section D.5) we have ∥(B̂⊥

1,ℓ)
⊤B1∥, ∥(B̂⊥

2,ℓ)
⊤B2∥ ⩽

Õ(
√

(d1 + d2)r/MτEℓ ).
Step 3 (Estimation of Ŝm,ℓ in low dimension): Now we estimate

the quantity Ŝm,ℓ ∈ Rk1×k2 for each task m. To do this we first build
the latent arms g̃m = x⊤Ûℓ and ṽm = z⊤V̂ℓ for all x ∈ X and z ∈ Z

for each m, and sample them following the E-optimal design in step
12 of Algorithm 6. We also show in Theorem D.22 (Section D.5) that
σmin(

∑
w̃∈W̃

bw̃w̃w̃⊤) > 0 which enables us to sample following E-optimal
design. Then use the estimator in (5.9). Then in Theorem D.25 we show
that ∥Ŝm,ℓ − µ

∗Sm,∗∥2
F ⩽ C1k1k2r log

(
2(k1+k2)
δℓ

)
/τEm,ℓ holds with probabil-

ity greater than (1 − δ). Also, note that in the second phase by setting
τ̃Em,ℓ =

√
8k1k2r log(4ℓ2|W|/δℓ)/Sr and sampling each arm w ∈W exactly

⌈b̂Eℓ,wτ̃Em,ℓ⌉ times we are guaranteed that ∥θ∗
k+1:p∥2 = O(k1k2r/τ̃

E
m,ℓ) in the

ℓ-th phase. Summing up over ℓ = 1 to
⌈
log2

(
4∆−1)⌉ across each task M

we get that the total samples complexity of the second stage is bounded
by Õ(M

√
k1k2r/Sr).

Step 4 (Convert to k1k2 bilinear bandits): Once GOBLIN recovers
Ŝm,τEℓ it rotates the arm set following (5.10) to build Wm to get the k1k2

bilinear bandits. The rest of the steps follow the same way as in steps 2, 3
and 4 of proof of Theorem 1.

Step 5 (Total Samples): We show the total samples in the third phase
are bounded by O( k

γ2
Y

log(k log2(∆
−1)|W|

δ
)⌈log2(∆

−1)⌉) where the effective
dimension k = (k1 + k2)r. The total samples of phase ℓ is given by τEℓ +∑
m(τ̃

E
m,ℓ + τ

G
m,ℓ). Finally, we get the total sample complexity by summing

over all phases from ℓ = 1 to ⌈log2
(
4∆−1)⌉. The claim of the theorem

follows by noting Õ(k/γ2
Y) ⩽ Õ(k/∆

2).
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5.4 Experiments
In this section, we conduct proof-of-concept experiments on both single
and multi-task bilinear bandits. In the single-task experiment, we compare
against the state-of-the-art RAGE algorithm (Fiez et al., 2019). We show in
Figure 5.1 (left) that GOBLIN requires fewer samples than the RAGE with
an increasing number of arms. In the multi-task experiment, we compare
against the state-of-the-art DouExpDes algorithm (Du et al., 2023). We
show in Figure 5.1 (right) that GOBLIN requires fewer samples than
DouExpDes with an increasing number of tasks. As experiments are not
a central contribution, we defer a fuller description of the experimental
set-up to Section D.6.

Figure 5.1: (Left) Single-task experiment: results show the number of
samples required to identify the optimal action pair for differing numbers
of actions. (Right) Multi-task experiment: results show the number of
samples required to identify the optimal action pair for varying numbers
of tasks. Note the scale of the samples in top left corner of the plots.
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5.5 Conclusions and Future Directions
In this paper, we formulated the first pure exploration multi-task repre-
sentation learning problem. We introduce an algorithm, GOBLIN that
achieves a sample complexity bound of Õ((d1 + d2)r/∆

2) which improves
upon the Õ((d1d2)/∆

2) sample complexity of RAGE (Fiez et al., 2019) in a
single-task setting. We then extend GOBLIN for multi-task pure explo-
ration bilinear bandit problems by learning latent features which enables
sample complexity that scales as Õ(M(k1 + k2)r/∆

2) which improves over
the Õ(M(k1k2)/∆

2) sample complexity of DouExpDes (Du et al., 2023).
Our analysis opens an exciting opportunity to analyze representation
learning in the kernel and neural bandits (Zhu et al., 2021; Mason et al.,
2021). We can leverage the fact that this type of optimal design does not
require the arm set to be an ellipsoid (Du et al., 2023) which enables us to
extend our analysis to non-linear representations.
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6 pretraining decision transformers with
reward prediction for in-context multi-task
structured bandit learning

In this paper, we study multi-task bandit learning with the goal of learning
an algorithm that discovers and exploits structure in a family of related
tasks. In multi-task bandit learning, we have multiple distinct bandit tasks
for which we want to learn a policy. Though distinct, the tasks share
some structure, which we hope to leverage to speed up learning on new
instances in this task family. Traditionally, the study of such structured
bandit problems has relied on knowledge of the problem structure like
linear bandits (Li et al., 2010; Abbasi-Yadkori et al., 2011; Degenne et al.,
2020), bilinear bandits (Jun et al., 2019), hierarchical bandits (Hong et al.,
2022a,b), Lipschitz bandits (Bubeck et al., 2008, 2011; Magureanu et al.,
2014), other structured bandits settings (Riquelme et al., 2018; Lattimore
and Szepesvári, 2019; Dong et al., 2021) and even linear and bilinear multi-
task bandit settings (Yang et al., 2022a; Du et al., 2023; Mukherjee et al.,
2023b). When structure is unknown an alternative is to adopt sophisticated
model classes, such as kernel machines or neural networks, exemplified
by kernel or neural bandits (Valko et al., 2013; Chowdhury and Gopalan,
2017; Zhou et al., 2020; Dai et al., 2022). However, these approaches are
also costly as they learn complex, nonlinear models from the ground up
without any prior data (Justus et al., 2018; Zambaldi et al., 2018).

In this paper, we consider an alternative approach of synthesizing a
bandit algorithm from historical data where the data comes from recorded
bandit interactions with past instances of our target task family. Concretely,
we are given a set of state-action-reward tuples obtained by running some
bandit algorithm in various instances from the task family. We then aim
to train a transformer (Vaswani et al., 2017) from this data such that it can
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learn in-context to solve new task instances. Laskin et al. (2022) consider
a similar goal and introduce the Algorithm Distillation (AD) method,
however, AD aims to copy the algorithm used in the historical data and
thus is limited by the ability of the data collection algorithm. Lee et al.
(2023) develop an approach, DPT, that enables learning a transformer that
obtains lower regret in-context bandit learning compared to the algorithm
used to produce the historical data. However, this approach requires
knowledge of the optimal action at each stage of the decision process.
In real problems, this assumption is hard to satisfy and we will show
that DPT performs poorly when the optimal action is only approximately
known. With this past work in mind, the goal of this paper is to answer
the question:

Can we learn an in-context bandit learning algorithm that obtains lower
regret than the algorithm used to produce the training data without

knowledge of the optimal action in each training task?

To answer this question, we introduce a new pre-training methodology,
called Pre-trained Decision Transformer with Reward Estimation (Pre-
DeToR) that obviates the need for knowledge of the optimal action in the
in-context data — a piece of information that is often inaccessible. Our key
observation is that while the mean rewards of each action change from task
to task, certain probabilistic dependencies are persistent across all tasks
with a given structure (Yang et al., 2020, 2022a; Mukherjee et al., 2023b).
These probabilistic dependencies can be learned from the pretraining data
and exploited to better estimate mean rewards and improve performance
in a new unknown test task. The nature of the probabilistic dependen-
cies depends on the specific structure of the bandit and can be complex
(i.e., higher-order dependencies beyond simple correlations). We propose
to use transformer models as a general-purpose architecture to capture
the unknown dependencies by training transformers to predict the mean
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rewards in each of the given trajectories (Mirchandani et al., 2023; Zhao
et al., 2023). The key idea is that transformers have the capacity to discover
and exploit complex dependencies in order to predict the rewards of all
possible actions in each task from a small history of action-reward pairs in
a new task. This paper demonstrates how such an approach can achieve
lower regret by outperforming state-of-the-art baselines, relying solely
on historical data, without the need for any supplementary information
like the action features or knowledge of the complex reward models. We
also show that the shared actions across the tasks are vital for PreDeToR
to exploit the latent structure. We show that PreDeToR learns to adapt,
in-context, to novel actions and new tasks as long as the number of new
actions is small compared to shared actions across the tasks.

Contributions

1. We introduce a new pre-training procedure of learning the underly-
ing reward structure and a decision algorithm. Moreover, PreDeToR
by predicting the next reward for all arms circumvents the issue of
requiring access to the optimal (or approximately optimal) action
during training time.

2. We demonstrate empirically that this training procedure results in
lower regret in a wide series of tasks (such as linear, nonlinear, bi-
linear, and latent bandits) compared to prior in-context learning
algorithms and bandit algorithms with privileged knowledge of the
common structure.

3. We also show that our training procedure leverages the shared latent
structure and is robust to a small number of new actions introduced
both during training and testing time.
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4. Finally, we theoretically analyze the generalization ability of Pre-
DeToR through the lens of algorithmic stability and new results for
the transformer setting.

6.1 Background
In this section, we first introduce our notation and the multi-task, struc-
tured bandit setting. We then formalize the in-context bandit learning
model studied in Laskin et al. (2022); Lee et al. (2023); Sinii et al. (2023);
Lin et al. (2023); Ma et al. (2023); Liu et al. (2023e,b).

Preliminaries

In this paper, we consider the multi-task linear bandit setting (Du et al.,
2023; Yang et al., 2020, 2022a). In the multi-task setting, we have a family
of related bandit problems that share an action set A and also a common
action feature space X. The actions in A are indexed by a = 1, 2, . . . ,A.
The feature of each action is denoted by x(a) ∈ Rd and d≪ A. A policy,
π, is a probability distribution over the actions.

Define [n] = {1, 2, . . . ,n}. In a multi-task structured bandit setting the
expected reward for each action in each task is assumed to be an unknown
function of the hidden parameter and action features (Lattimore and
Szepesvári, 2020a; Gupta et al., 2020a). The interaction proceeds iteratively
over n rounds for each taskm ∈ [M]. At each round t ∈ [n] for each task
m ∈ [M], the learner selects an action Im,t ∈ A and observes the reward
rm,t = f(x(Im,t),θm,∗) + ηm,t, where θm,∗ ∈ Rd is the hidden parameter
specific to the taskm to be learned by the learner. The function f(·, ·) is the
unknown reward structure. This can be f(x(Im,t),θm,∗) = x(Im,t)

⊤θm,∗

for the linear setting or even more complex correlation between features
and θm,∗ (Filippi et al., 2010a; Abbasi-Yadkori et al., 2011; Riquelme et al.,
2018; Lattimore and Szepesvári, 2019; Dong et al., 2021).
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In our paper, we assume that there exist weak demonstrators denoted
by πw. These weak demonstrators are stochastic A-armed bandit algo-
rithms like Upper Confidence Bound (UCB) (Auer et al., 2002; Auer and
Ortner, 2010) or Thompson Sampling (Thompson, 1933; Agrawal and
Goyal, 2012; Russo et al., 2018; Zhu and Tan, 2020). We refer to these
algorithms as weak demonstrators because they do not use knowledge
of task structure or arm feature vectors to plan their sampling policy. In
contrast to a weak demonstrator, a strong demonstrator, like LinUCB,
uses feature vectors and knowledge of task structure to conduct infor-
mative exploration. Whereas weak demonstrators always exist, there are
many real-world settings with no known strong demonstrator algorithm
or where the feature vectors are unobserved and the learner can only use
the history of rewards and actions.

In-Context Learning Model

Similar to Lee et al. (2023); Sinii et al. (2023); Lin et al. (2023); Ma et al.
(2023); Liu et al. (2023e,b) we assume the in-context learning model. We
first discuss the pretraining procedure.

Pretraining: Let Tpre denote the distribution over tasksm at the time
of pretraining. Let Dpre be the distribution over all possible interactions
that the πw can generate. We first sample a task m ∼ Tpre and then a
context Hm which is a sequence of interactions for n rounds conditioned
on the task m such that Hm ∼ Dpre(·|m). So Hm = {Im,t, rm,t}

n
t=1. We

call this dataset Hm an in-context dataset as it contains the contextual
information about the taskm. We denote the samples in Hm till round t
as Ht

m = {Im,s, rm,s}
t−1
s=1. This dataset Hm can be collected in several ways:

(1) random interactions withinm, (2) demonstrations from an expert, and
(3) rollouts of an algorithm. Finally, we train a causal GPT-2 transformer
model T parameterized by Θ (where Θ are all transformer parameters)
on this dataset Dpre. Specifically, we define TΘ (· | Ht

m) as the transformer
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model that observes the dataset Ht
m till round t and then produces a

distribution over the actions. Our primary novelty lies in our training
procedure which we explain in detail in Section 6.2.

Testing: We now discuss the testing procedure for our setting. Let
Ttest denote the distribution over test tasks m ∈ [Mtest ] at the time of
testing. Let Dtest denote a distribution over all possible interactions that
can be generated by πw during test time. At deployment time, the dataset
H0
m ← {∅} is initialized empty. At each round t, an action is sampled from

the trained transformer model It ∼ TΘ(· | Ht
m). The sampled action and

resulting reward, rt, are then added to Ht
m to form Ht+1

m and the process
repeats for n total rounds. Finally, note that in this testing phase, the
model parameter Θ is not updated. Finally, the goal of the learner is to
minimize cumulative regret for all task m ∈ [Mtest] defined as follows:
E[Rn] = 1

Mtest

∑Mtest
m=1

∑n
t=1 maxa∈A f (x(a),θm,∗) − f (x(It),θm,∗).

Related In-context Learning Algorithms

In this section, we discuss related algorithms for in-context decision-
making. For completeness, we describe the DPT and AD training proce-
dure and algorithm now. During training, DPT first samplesm ∼ Tpre and
then an in-context dataset Hm ∼ Dpre(·|,m). It adds this Hm to the training
dataset Htrain, and repeats to collect Mpre such training tasks. For each
taskm, DPT requires the optimal action am,∗ = argmaxa f(x(m,a),θm,∗)

where f(x(m,a),θm,∗) is the expected reward for the action a in task m.
Since the optimal action is usually not known in advance, in Section 6.3 we
introduce a practical variant of DPT that approximates the optimal action
with the best action identified during task interaction. During training
DPT minimizes the cross-entropy loss:

LDPT
t = cross-entropy(TΘ(·|Ht

m),p(am,∗)) (6.1)
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where p(am,∗)∈△A is a one-hot vector such that p(j)= 1 when j=am,∗

and 0 otherwise. This loss is then back-propagated and used to update
the model parameter Θ.

During test time evaluation for online setting the DPT selects It ∼

softmaxτa(TΘ(·|Ht
m)) where we define the softmaxτa(x) over a A dimen-

sional vector x ∈ RA as softmaxτa(x(a)) = exp(x(a)/τ)/
∑A
a ′=1 exp(x(a ′)/τ)

which produces a distribution over actions weighted by the temperature
parameter τ > 0. Therefore this sampling procedure has a high probability
of choosing the predicted optimal action as well as induce sufficient ex-
ploration. In the online setting, the DPT observes the reward rt(It) which
is added to Ht

m. So the Hm during online testing consists of {It, rt}nt=1

collected during testing. This interaction procedure is conducted for each
test taskm ∈ [Mtest ]. In the testing phase, the model parameter Θ is not
updated.

An alternative to DPT that does not require knowledge of the optimal
action is the AD approach (Laskin et al., 2022; Lu et al., 2023). In AD, the
learner aims to predict the next action of the demonstrator. So it minimizes
the cross-entropy loss as follows:

LAD
t = cross-entropy(TΘ(·|Ht

m),p(Im,t)) (6.2)

where p(Im,t) is a one-hot vector such that p(j) = 1 when j = Im,t (the
true action taken by the demonstrator) and 0 otherwise. At deployment
time, AD selects It ∼ softmaxτa(TΘ(·|Ht

m)). Note that the objective of AD
is to match the performance of the demonstrator. In the next section, we
introduce a new method that can improve upon the demonstrator without
knowledge of the optimal action.



124

Related Works

In this section, we briefly discuss related works. In-context decision mak-
ing (Laskin et al., 2022; Lee et al., 2023) has emerged as an attractive alter-
native in Reinforcement Learning (RL) compared to updating the model
parameters after collection of new data (Mnih et al., 2013; François-Lavet
et al., 2018). In RL the contextual data takes the form of state-action-
reward tuples representing a dataset of interactions with an unknown
environment (task). In this paper, we will refer to this as the in-context
data. Recall that in many real-world settings, the underlying task can be
structured with correlated features, and the reward can be highly non-
linear. So specialized bandit algorithms fail to learn in these tasks. To
circumvent this issue, a learner can first collect in-context data consisting
of just action indices It and rewards rt. Then it can leverage the represen-
tation learning capability of deep neural networks to learn a pattern across
the in-context data and subsequently derive a near-optimal policy (Lee
et al., 2023; Mirchandani et al., 2023). We refer to this learning framework
as an in-context decision-making setting.

The in-context decision-making setting of Sinii et al. (2023) also allows
changing the action space by learning an embedding over the action space
yet also requires the optimal action during training. In contrast we do
not require the optimal action as well as show that we can generalize to
new actions without learning an embedding over them. Similarly, Lin
et al. (2023) study the in-context decision-making setting of Laskin et al.
(2022); Lee et al. (2023), but they also require a greedy approximation
of the optimal action. The Ma et al. (2023) also studies a similar setting
for hierarchical RL where they stitch together sub-optimal trajectories
and predict the next action during test time. Similarly, Liu et al. (2023e)
studies the in-context decision-making setting to predict action instead of
learning a reward correlation from a short horizon setting. In contrast we
do not require a greedy approximation of the optimal action, deal with
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short horizon setting and changing action sets during training and testing,
and predict the estimated means of the actions instead of predicting the
optimal action. A survey of the in-context decision-making approaches
can be found in Liu et al. (2023b).

In the in-context decision-making setting, the learning model is first
trained on supervised input-output examples with the in-context data
during training. Then during test time, the model is asked to complete a
new input (related to the context provided) without any update to the
model parameters (Xie et al., 2021; Min et al., 2022). Motivated by this,
Lee et al. (2023) recently proposed the Decision Pretrained Transform-
ers (DPT) that exhibit the following properties: (1) During supervised
pretraining of DPT, predicting optimal actions alone gives rise to near-
optimal decision-making algorithms for unforeseen task during test time.
Note that DPT does not update model parameters during test time and,
therefore, conducts in-context learning on the unforeseen task. (2) DPT
improves over the in-context data used to pretrain it by exploiting latent
structure. However, DPT either requires the optimal action during training
or if it needs to approximate the optimal action. For approximating the
optimal action, it requires a large amount of data from the underlying
task.

At the same time, learning the underlying data pattern from a few
examples during training is becoming more relevant in many domains like
chatbot interaction (Madotto et al., 2021; Semnani et al., 2023), recommen-
dation systems, healthcare (Ge et al., 2022; Liu et al., 2023c), etc. This is re-
ferred to as few-shot learning. However, most current RL decision-making
systems (including in-context learners like DPT) require an enormous
amount of data to learn a good policy.

The in-context learning framework is related to the meta-learning
framework (Bengio et al., 1990; Schaul and Schmidhuber, 2010). Broadly,
these techniques aim to learn the underlying latent shared structure within
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the training distribution of tasks, facilitating faster learning of novel tasks
during test time. In the context of decision-making and reinforcement
learning (RL), there exists a frequent choice regarding the specific ’struc-
ture’ to be learned, be it the task dynamics (Fu et al., 2016; Nagabandi et al.,
2018; Landolfi et al., 2019), a task context identifier (Rakelly et al., 2019;
Zintgraf et al., 2019; Liu et al., 2021), or temporally extended skills and
options (Perkins and Precup, 1999; Gupta et al., 2018; Jiang et al., 2022).

However, as we noted in the Chapter 6, one can do a greedy approxi-
mation of the optimal action from the historical data using a weak demon-
strator and a neural network policy (Finn et al., 2017; Rothfuss et al., 2018).
Moreover, the in-context framework generally is more agnostic where
it learns the policy of the demonstrator (Duan et al., 2016; Wang et al.,
2016; Mishra et al., 2017). Note that both DPT-greedy and PreDeToR are
different than algorithmic distillation (Laskin et al., 2022; Lu et al., 2023)
as they do not distill an existing RL algorithm. moreover, in contrast to
DPT-greedy which is trained to predict the optimal action, the PreDeToR
is trained to predict the reward for each of the actions. This enables the
PreDeToR (similar to DPT-greedy) to show to potentially emergent online
and offline strategies at test time that automatically align with the task
structure, resembling posterior sampling.

As we discussed in the Chapter 6, in decision-making, RL, and imitation
learning the transformer models are trained using autoregressive action
prediction (Yang et al., 2023). Similar methods have also been used in
Large language models (Vaswani et al., 2017; Roberts et al., 2019). One of
the more notable examples is the Decision Transformers (abbreviated as
DT) which utilizes a transformer to autoregressively model sequences of
actions from offline experience data, conditioned on the achieved return
(Chen et al., 2021a; Janner et al., 2021). This approach has also been
shown to be effective for multi-task settings (Lee et al., 2022), and multi-
task imitation learning with transformers (Reed et al., 2022; Brohan et al.,
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2022; Shafiullah et al., 2022). However, the DT methods are not known to
improve upon their in-context data, which is the main thrust of this paper
(Brandfonbrener et al., 2022; Yang et al., 2022b).

Our work is also closely related to the offline RL setting. In offline
RL, the algorithms can formulate a policy from existing data sets of state,
action, reward, and next-state interactions. Recently, the idea of pessimism
has also been introduced in an offline setting to address the challenge
of distribution shift (Kumar et al., 2020; Yu et al., 2021; Liu et al., 2020;
Ghasemipour et al., 2022). Another approach to solve this issue is policy
regularization (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019;
Siegel et al., 2020; Liu et al., 2019), or reuse data for related task (Li et al.,
2020; Mitchell et al., 2021), or additional collection of data along with
offline data (Pong et al., 2022). However, all of these approaches still have
to take into account the issue of distributional shifts. In contrast PreDeToR
and DPT-greedy leverages the decision transformers to avoid these issues.
Both of these methods can also be linked to posterior sampling. Such
connections between sequence modeling with transformers and posterior
sampling have also been made in Chen et al. (2021a); Müller et al. (2021);
Lee et al. (2023); Yang et al. (2023).

6.2 Proposed Algorithm PreDeToR
We now introduce our main algorithmic contribution, PreDeToR (which
stands for Pre-trained Decision Transformer with Reward Estimation).

Pre-training Next Reward Prediction
The key idea behind PreDeToR is to leverage the in-context learning ability
of transformers to infer the reward of each arm in a given test task. By
training this in-context ability on a set of training tasks, the transformer
can implicitly learn structure in the task family and exploit this structure
to infer rewards without trying every single arm. Thus, in contrast to
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DPT and AD that output actions directly, PreDeToR outputs a scalar value
reward prediction for each arm. To this effect, we append a linear layer of
dimension A on top of a causal GPT2 model, denoted by TFr

Θ(·|Hm), and
use a least-squares loss to train the transformer to predict the reward for
each action with these outputs. Note that we use TFr

Θ(·|Hm) to denote
a reward prediction transformer and TΘ(·|Hm) as the transformer that
predicts a distribution over actions (as in DPT and AD ). At every round
t the transformer predicts the next reward for each of the actions a ∈ A

for the task m based on Ht
m = {Im,s, rm,s}

t−1
s=1. This predicted reward is

denoted by r̂m,t+1(a) for each a ∈ A.
Loss calculation: For each training task, m, we calculate the loss at

each round, t, using the transformer’s prediction r̂m,t(Im,t) and the actual
observed reward rm,t that followed action Im,t. We use a least-squares
loss function:

Lt = (̂rm,t(Im,t) − rm,t)
2 (6.3)

and hence minimizing this loss will minimize the mean squared-error of
the transformer’s predictions. The loss is calculated using (6.3) and is
backpropagated to update the model parameter Θ.

Exploratory Demonstrator: Observe from the loss definition in (6.3)
that it is calculated from the observed true reward and action from the
dataset Hm. In order for the transformer to learn accurate reward predic-
tions during training, we require that the weak demonstrator is sufficiently
exploratory such that it collects Hm such that Hm contains some reward
rm,t for each action a. We discuss in detail the impact of the demonstrator
on PreDeToR (-τ) training in Section E.12.

Deploying PreDeToR
At deployment time, PreDeToR learns in-context to predict the mean re-
ward of each arm on an unseen task and acts greedily with respect to this
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prediction. That is, at deployment time, a new task is sampled,m ∼ Ttest,
and the dataset H0

m is initialized empty. Then at every round t, PreDeToR
chooses It = argmaxa∈A TFr

Θ (̂rm,t(a) | H
t
m) which is the action with

the highest predicted reward and r̂m,t(a) is the predicted reward of action
a. Note that PreDeToR is a greedy policy and thus may fail to conduct suf-
ficient exploration. To remedy this potential limitation, we also introduce a
soft variant, PreDeToR-τ that chooses It ∼ softmaxτa (TFr

Θ (̂rm,t(a) | H
t
m)).

For both PreDeToR and PreDeToR-τ, the observed reward rt(It) is added
to the dataset Hm and then used to predict the reward at the next round
t + 1. The full pseudocode of using PreDeToR for online interaction is
shown in Algorithm 7. In Section E.14, we discuss how PreDeToR (-τ) can
be deployed for offline learning.

6.3 Empirical Study: Non-Linear Structure
Having introduced PreDeToR, we now investigate its performance in di-
verse bandit settings compared to other in-context learning algorithms.
In our first set of experiments, we use a bandit setting with a common
non-linear structure across tasks. Ideally, a good learner would leverage
the structure, however, we choose the structure such that no existing al-
gorithms are well-suited to the non-linear structure. This setting is thus
a good testbed for establishing that in-context learning can discover and
exploit common structure. Moreover, each task only consists of a few
rounds of interactions. This setting is quite common in recommender
settings where user interaction with the system lasts only for a few rounds
and has an underlying non-linear structure (Kwon et al., 2022; Tomkins
et al., 2020). We show that PreDeToR achieves lower regret than other in-
context algorithms for the non-linear structured bandit setting. We study
the performance of PreDeToR in the large horizon setting in Section E.6.

Baselines: We first discuss the baselines used in this setting.
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Algorithm 7 Pre-trained Decision Transformer with Reward Estimation
(PreDeToR)

1: Collecting Pretraining Dataset
2: Initialize empty pretraining dataset Htrain
3: for i in [Mpre] do
4: Sample taskm ∼ Tpre, in-context dataset Hm ∼ Dpre(·|m) and add

this to Htrain.
5: Pretraining model on dataset
6: Initialize model TFr

Θ with parameters Θ
7: while not converged do
8: Sample Hm from Htrain and predict r̂m,t for action (Im,t) for all
t ∈ [n]

9: Compute loss in (6.3) with respect to rm,t and backpropagate to
update model parameter Θ.

10: Online test-time deployment
11: Sample unknown taskm ∼ Ttest and initialize empty H0

m = {∅}
12: for t = 1, 2, . . . ,n do
13: Use TFr

Θ onm at round t to choose

It

{
= argmaxa∈A TFr

Θ (̂rm,t(a) | H
t
m) , PreDeToR

∼ softmaxτaTFr
Θ (̂rm,t(a) | H

t
m) , PreDeToR-τ

14: Add {It, rt} to Ht
m to form Ht+1

m .

(1) PreDeToR: This is our proposed method shown in Algorithm 7.
(2) PreDeToR-τ: This is the proposed exploratory method shown in

Algorithm 7 and we fix τ = 0.05.
(3) DPT-greedy: This baseline is the greedy approximation of the

DPT algorithm from Lee et al. (2023) which is discussed in Section 6.1.
Note that we choose DPT-greedy as a representative example of similar in-
context decision-making algorithms studied in Lee et al. (2023); Sinii et al.
(2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023e,b) all of which
require the optimal action (or its greedy approximation). DPT-greedy
estimates the optimal arm using the reward estimates for each arm during
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each task.
(4) AD: This is the Algorithmic Distillation method (Laskin et al., 2022;

Lu et al., 2021) discussed in Section 6.1.
(5) Thomp: This baseline is the celebrated stochastic A-action bandit

Thompson Sampling algorithm from Thompson (1933); Agrawal and
Goyal (2012); Russo et al. (2018); Zhu and Tan (2020). We choose Thomp
as the weak demonstrator πw as it does not make use of arm features.
Thomp is also a stochastic algorithm that induces more exploration in the
demonstrations.

(6) LinUCB: (Linear Upper Confidence Bound): This baseline is the
Upper Confidence Bound algorithm for the linear bandit setting that lever-
ages the linear structure and feature of the arms to select the most promis-
ing action as well as conducting exploration. We choose LinUCB as a
baseline for each test task to show the limitations of algorithms that use
linear feedback structure as an underlying assumption to select actions.
Note that LinUCB requires oracle access to features to select actions per
task.

(7) MLinGreedy: This is the multi-task linear regression bandit algo-
rithm proposed by Yang et al. (2021a). This algorithm assumes that there
is a common low-dimensional feature extractor shared between the tasks
and the reward of each task linearly depends on this feature extractor. We
choose MLinGreedy as a baseline to show the limitations of algorithms
that use linear feedback structure across tasks as an underlying assumption
to select actions. Note that MLinGreedy requires oracle access to the action
features to select actions as opposed to DPT, AD, and PreDeToR.

We describe in detail the baselines Thomp, LinUCB, and MLinGreedy
for interested readers in Section E.1.

Outcomes: Before presenting the result we discuss the main outcomes
from our experimental results in this section:
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Finding 1: PreDeToR (-τ) lowers regret compared to other baselines
under unknown, non-linear structure. It learns to exploit the latent
structure of the underlying tasks from in-context data even when
it is trained without the optimal action am,∗ (or its approximation)
and without action features X.

Experimental Result: These findings are reported in Figure 6.1. In
Figure 6.1a we show the non-linear bandit setting for horizon n = 50,
Mpre = 100000,Mtest = 200, A = 6, and d = 2. The demonstrator πw is the
Thomp algorithm. We observe that PreDeToR (-τ) has lower cumulative
regret than DPT-greedy. Note that for this low data regime (short horizon)
the DPT-greedy does not have a good estimation of âm,∗ which results in a
poor prediction of optimal action âm,t,∗. This results in higher regret. The
PreDeToR (-τ) has lower regret than LinUCB, and MLinGreedy, which fail
to perform well in this non-linear setting due to their algorithmic design
and linear feedback assumption. Finally, PreDeToR-τ performs slightly
better than PreDeToR in both settings as it conducts more exploration.

In Figure 6.1b we show the non-linear bandit setting for horizonn = 25,
Mpre = 100000,Mtest = 200, A = 6, and d = 2 where the norm of the θm,∗

determines the reward of the actions which also is a non-linear function
θm,∗ and action features. This setting is similar to the wheel bandit setting
of Riquelme et al. (2018). Again, we observe that PreDeToR has lower
cumulative regret than all the other baselines.

Finally in Figure 6.1c and Figure 6.1d we show the performance of
PreDeToR against other baselines in real-world datasets Movielens and
Yelp. The Movielens dataset consists of more than 32 million ratings
of 200,000 users and 80,000 movies (Harper and Konstan, 2015) where
each entry consists of user-id, movie-id, rating, and timestamp. The Yelp
dataset (Asghar, 2016) consists of ratings of 1300 business categories by
150,000 users. Each entry is summarized as user-id, business-id, rating,
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and timestamp. Previously structured bandit works (Deshpande and
Montanari, 2012; Hong et al., 2023) directly fit a linear structure or low-
rank factorization to estimate the θm,∗ and simulate the ratings. However,
we directly use the user-ids and movie-ids (or business-ids) to build a
histogram of ratings per user and calculate the mean rating per movie
(or business-id) per task. Define this as the {µm,a}

A
a=1. This is then used

to simulate the rating for n horizon per movie per task where the data
collection algorithm is uniform sampling. Note that this does not require
estimation of user or movie features, and PreDeToR (-τ) learns to exploit
the latent structure of user-movie (or business) rating correlations directly
from the data. From Figure 6.1c and Figure 6.1d we see that PreDeToR,
and PreDeToR-τ outperform all the other baselines in these settings.

(a) Non-linear bandit (b) Feature bandit (c) Movielens (d) Yelp

Figure 6.1: Non-linear regime. The horizontal axis is the number of rounds.
Confidence bars show one standard error.

6.4 Empirical Study: Linear Structure and
Understanding the Exploration of PreDeToR

The previous experiments were conducted in a non-linear structured set-
ting where we are unaware of a provably near-optimal algorithm. To
assess how close PreDeToR’s regret is to optimal, in this section, we con-
sider a linear setting for which there exist well-understood algorithms
(Abbasi-Yadkori et al., 2011; Lattimore and Szepesvári, 2020a). Such algo-
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rithms provide a strong upper bound for PreDeToR. We summarize the
key finding below:

Finding 2: PreDeToR (-τ) matches the performance of the optimal
algorithm LinUCB in linear bandit setting as it learns to exploit the
latent structure across tasks from in-context data and without access
to features.

In Figure 6.2 we first show the linear bandit setting for horizon n = 25,
Mpre = 200000, Mtest = 200, A = 10, and d = 2. Note that the length of
the context (the number of rounds) is an artifact of the transformer archi-
tecture and computational complexity. This is because the self-attention
takes in as input a length-n sequence of tokens of size d, and requires
O
(
dn2) time to compute the output (Keles et al., 2023). Further empirical

setting details are stated in Section E.1.
We observe from Figure 6.2 that PreDeToR (-τ) has lower cumulative

regret than DPT-greedy, and AD. Note that for this low data (short hori-
zon) regime, the DPT-greedy does not have a good estimation of âm,∗

which results in a poor prediction of optimal action âm,t,∗. This results
in higher regret. Observe that PreDeToR (-τ) performs quite similarly to
LinUCB and lowers regret compared to Thomp which also shows that
PreDeToR is able to exploit the latent linear structure and reward corre-
lation of the underlying tasks. Note that LinUCB is close to the optimal
algorithm for this linear bandit setting. PreDeToR outperforms AD as the
main objective of AD is to match the performance of its demonstrator. In
this short horizon, we see that MLinGreedy performs similarly to LinUCB.

We also show how the prediction error of the optimal action by Pre-
DeToR is small compared to LinUCB in the linear bandit setting. In Fig-
ure 6.2b we first show how the 10 actions are distributed in theMtest = 200
test tasks. In Figure 6.2b for each bar, the frequency indicates the number
of tasks where the action (shown in the x-axis) is the optimal action. Then,
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in Figure 6.2c, we show the prediction error of PreDeToR (-τ) for each task
m ∈ [Mtest]. The prediction error is calculated as (µ̂m,n,∗(a) − µm,∗(a))

2

where µ̂m,n,∗(a) = maxa θ̂⊤
m,nxm(a) is the empirical mean at the end of

round n, and µ∗,m(a) = maxa θ⊤
m,∗xm(a) is the true mean of the optimal

action in task m. Then we average the prediction error for the action
a ∈ [A] by the number of times the action a is the optimal action in some
taskm. From the Figure 6.2c, we see that for actions {2, 3, 5, 6, 7, 10}, the pre-
diction error of PreDeToR is either close or smaller than LinUCB. Note that
LinUCB estimates the empirical mean directly from the test task, whereas
PreDeToR has a strong prior based on the training data. So PreDeToR
is able to estimate the reward of the optimal action quite well from the
training dataset Dpre. This shows the power of PreDeToR to go beyond the
in-context decision-making setting studied in Lee et al. (2023); Lin et al.
(2023); Ma et al. (2023); Sinii et al. (2023); Liu et al. (2023e) which require
long horizons/trajectories and optimal action during training to learn a
near-optimal policy. We discuss how exploration of PreDeToR (-τ) results
in low cumulative regret in Section E.10.

(a) Linear Bandit setting (b) Test action distribu-
tion

(c) Test Prediction Er-
ror

Figure 6.2: Linear Expt. The horizontal axis is the number of rounds.
Confidence bars show one standard error.
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6.5 Empirical Study: Importance of Shared
Structure and Introducing New Arms

One of our central claims is that PreDeToR (-τ) internally learns and
leverages the shared structure across the training and testing tasks. To
validate this claim, in this section, we consider the introduction of new
actions at test time that do not follow the structure of training time. These
experiments are particularly important as they show the extent to which
PreDeToR(-τ) is leveraging the latent structure and the shared correlation
between the actions and rewards.

Invariant actions: We denote the set of actions fixed across the different
tasks in the pretraining in-context dataset as Ainv. Therefore these action
features x(a) ∈ Rd for a ∈ Ainv are fixed across the different tasksm. Note
that these invariant actions help the transformer Tw to learn the latent
structure and the reward correlation across the different tasks. Therefore,
as the structure breaks down, PreDeToR starts performing worse than
other baselines.

New actions: However, we also want to test how robust is PreDeToR
(-τ) to new actions not seen during training time. To this effect, for each
task m ∈ [Mpre] and m ∈ [Mtest] we introduce A− |Ainv| new actions. That
is both for train and test tasks, we introduce new actions. For each of these
new actions a ∈ [A− |Ainv|] we choose the features x(m,a) randomly from
X ⊆ Rd. Note the transformer now trains on a dataset Hm ⊆ Dpre ̸= Dtest.

Baselines: We implement the same baselines discussed in Section 6.3.
Outcomes: Again before presenting the result we discuss the main

outcomes from our experimental results of introducing new actions during
data collection and evaluation:

Finding 3: PreDeToR (-τ) performance degrades as the shared struc-
ture breaks down.
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(a) Linear 0 new ac-
tion

(b) Linear 1 new ac-
tion

(c) Linear 5 new ac-
tions

(d) Linear 10 new ac-
tions

Figure 6.3: New action experiments. The horizontal axis is the number of
rounds. Confidence bars show one standard error.

(a) Non-linear 0 new
action

(b) Non-linear 1 new
action

(c) Non-linear 5 new
actions

(d) Non-linear 10
new actions

Figure 6.4: New action experiments with non-linear setting.

Experimental Result: We observe these outcomes in Figure 6.3 and
Figure 6.4. We consider the linear and non-linear bandit setting of horizon
n = 50,Mpre = 100000,Mtest = 200, A = 10, and d = 2. Here during data
collection and during collecting the test data, we randomly select between
0, 1, 5, and 10 new actions from Rd for each task m. So the number of
invariant actions is |Ainv| ∈ {10, 5, 1, 0}. Again, the demonstrator πw is the
Thomp algorithm. From Figure 6.3a, 6.3b, 6.3c, and 6.3d, we observe that
when the number of invariant actions is less than PreDeToR (-τ) has lower
cumulative regret than DPT-greedy, and AD. Observe that PreDeToR (-τ)
matches LinUCB and has lower regret than DPT-greedy, and AD when
Ainv| ∈ {10, 5, 1}. This shows that PreDeToR (-τ) is able to exploit the
latent linear structure of the underlying tasks. However, as the number of
invariant actions decreases we see that PreDeToR(-τ) performance drops
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and becomes similar to the unstructured bandits Thomp.
Similarly in Figure 6.4a, 6.4b, 6.4c, and 6.4d we show the performance

of PreDeToR in the non-linear bandit setting. Observe that LinUCB, MLin-
Greedy fails to perform well in this non-linear setting due to their as-
sumption of linear rewards. Again note that PreDeToR (-τ) has lower
regret than DPT-greedy, and AD when Ainv| ∈ {10, 1}. This shows that Pre-
DeToR (-τ) is able to exploit the latent linear structure of the underlying
tasks. However, as the number of invariant actions decreases we see that
PreDeToR(-τ) performance drops and becomes similar to AD.

We also empirically study the test performance of PreDeToR (-τ) in
other non-linear bandit settings such as bilinear bandits (Section E.2),
latent bandits (Section E.3), draw a connection between PreDeToR and
Bayesian estimators (Section E.4), and perform sensitivity and ablation
studies in Section E.5, E.7, E.8, E.9. We discuss data collection algorithms in
Section E.12 and the offline setting in Section E.14. Due to space constraints,
we refer the interested reader to the relevant section in the appendices.

6.6 Theoretical Analysis of Generalization
In this section, we present a theoretical analysis of how PreDeToR-τ gener-
alizes to an unknown target task given a set of source tasks. We observe
that PreDeToR-τ’s performance hinges on a low excess error on the pre-
dicted reward of the actions of the unknown target task based on the
in-context data. Thus, in our analysis, we show that, in low-data regimes,
PreDeToR-τ has a low expected excess risk for the unknown target task as
the number of source tasks increases. This is summarized as follows:
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Finding 4: PreDeToR (-τ) has a low expected excess risk for the
unknown target task as the number of source tasks increases. More-
over, the transfer learning risk of PreDeToR-τ (once trained on the
M source tasks) scales with Õ(1/

√
M).

To show this, we proceed as follows: Suppose we have the training
data set Hall = {Hm}

Mpre
m=1, where the taskm ∼ T with a distribution T and

the task data Hm is generated from a distribution Dpre(·|m). For illustra-
tion purposes, here we consider the training data distribution Dpre(·|m)

where the actions are sampled following soft-LinUCB (a stochastic vari-
ant of LinUCB) (Chu et al., 2011). Given the loss function in eq. (6.3),
we can define the task m training loss of PreDeToR-τ as L̂m(TFr

Θ) =
1
n

∑n
t=1 ℓ(rm,t, TFr

Θ(̂rm,t(Im,t)|H
t
m)) =

1
n

∑n
t=1(TFr

Θ(̂rm,t(Im,t)|H
t
m)−rm,t)

2.
We drop the notation Θ, r from TFr

Θ for simplicity and letM =Mpre. We
define

T̂ =arg min
T∈Alg

L̂Hall(T) :=
1
M

M∑
m=1

L̂m(T), (ERM) (6.4)

where Alg denotes the space of algorithms induced by the T. Let Lm(T) =
EHm

[
L̂m(T)

]
and LMTL(T) = E

[
L̂Hall(T)

]
= 1
M

∑M
m=1 Lm(T) be the corre-

sponding population risks. For the ERM in (6.4), we want to bound the
following excess Multi-Task Learning (MTL) risk of PreDeToR-τ

RMTL(T̂) = LMTL(T̂) − min
T∈Alg

LMTL(T). (6.5)

Note that for in-context learning, a training sample (It, rt) impacts all
future decisions of the algorithm from time step t + 1 to n. Therefore,
we need to control the stability of the input perturbation of the learning
algorithm learned by the transformer. We introduce the following stability
condition.
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Assumption 9. (Error stability (Bousquet and Elisseeff, 2002; Li et al., 2023)).
Let H = (It, rt)nt=1 be a sequence in [A] × [0, 1] with n ⩾ 1 and H′ be the
sequence where the t ′th sample of H is replaced by (I′t, r′t). Error stability holds
for a distribution (I, r) ∼ D if there exists a K > 0 such that for any H, (I′t, r′t) ∈
([A]× [0, 1]), t ⩽ n, and T ∈ Alg, we have

∣∣E(I,r) [ℓ(r, T(̂r(I)|H)) − ℓ (r, T(̂r(I)|H′))]
∣∣ ⩽ K

n
.

Let ρ be a distance metric on Alg. Pairwise error stability holds if for all T, T′ ∈
Alg we have

∣∣E(x,y) [ℓ(r, T(̂r(I)|H)) − ℓ (r, T ′(̂r(I)|H)) − ℓ(r, T(̂r(I)|H ′)) + ℓ (r, T ′(̂r(I)|H ′))]
∣∣ ⩽ Kρ(T,T′)

n
.

Now we present the Multi-task learning (MTL) risk of PreDeToR-τ.

Theorem 6.1. (PreDeToR risk) Suppose error stability Assumption 9 holds
and assume loss function ℓ(·, ·) is C-Lipschitz for all rt ∈ [0,B] and horizon
n ⩾ 1. Let T̂ be the empirical solution of (ERM) and N(A, ρ, ϵ) be the covering
number of the algorithm space Alg following Definition E.2 and E.3. Then with
probability at least 1 − 2δ, the excess MTL risk of PreDeToR-τ is bounded by

RMTL(T̂) ⩽ 4 C√
nM

+ 2(B+ K logn)
√

log(N(Alg,ρ,ε)/δ)
cnM

,

where N(Alg, ρ, ε) is the covering number of transformer T̂ and ϵ = 1/
√
nM.

The proof of Theorem 6.1 is provided in Section E.16. From Theorem 6.1
we see that in low-data regime with a small horizon n, as the number of
tasksM increases the MTL risk decreases. We further discuss the stability
factor K and covering number N(Alg, ρ, ε) in Theorem E.4, and E.5.

We now present the transfer learning risk of PreDeToR-τ for an un-
known target task g ∼ T with the test dataset Hg ∼ Dtest(·|g). Note that
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the test data distribution Dtest(·|g) is such that the actions are sampled
following soft-LinUCB.

Theorem 6.2. (Transfer risk) Consider the setting of Theorem 6.1 and assume
the training source tasks are independently drawn from task distribution T. Let
T̂F be the empirical solution of (ERM) and g∼T. Define the expected excess
transfer learning risk Eg[Rg] = Eg

[
Lg(T̂)

]
−arg minT∈Alg Eg [Lg(T)]. Then

with probability at least 1−2δ, the Eg
[
Rg
]
⩽4 C√

M
+2B

√
log(N(Alg,ρ,ε)/δ)

M
, where

N(Alg, ρ, ε) is the covering number of T̂ and ϵ = 1√
M

.

The proof is given in Section E.16. This shows that for the transfer
learning risk of PreDeToR-τ (once trained on theM source tasks) scales
with Õ(1/

√
M). This is because the unseen target task g ∼ T induces a

distribution shift, which, typically, cannot be mitigated with more samples
n per task. A similar observation is provided in Lin et al. (2023). We
further discuss this in Theorem E.7. We also observe a similar phenomenon
empirically; see the discussion in Section E.13.

6.7 Conclusions, Limitations and Future Works
In this paper, we studied the supervised pretraining of decision trans-
formers in the multi-task structured bandit setting when the knowledge
of the optimal action is unavailable. Moreover, our proposed methods
PreDeToR (-τ) do not need to know the action representations or the re-
ward structure and learn these in-context with the help of offline data.
The PreDeToR (-τ) predict the reward for the next action of each action
during pretraining and can generalize well in-context in several regimes
spanning low-data, new actions, and structured bandit settings like linear,
non-linear, bilinear, latent bandits. The PreDeToR (-τ) outperforms other
in-context algorithms like AD, DPT-greedy in most of the experiments.
Finally, we theoretically analyze PreDeToR-τ and show that pretraining
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it inM source tasks leads to a low expected excess error on a target task
drawn from the same task distribution T. In future, we want to extend
our PreDeToR (-τ) to MDP setting (Sutton and Barto, 2018; Agarwal et al.,
2019), and constraint MDP setting (Efroni et al., 2020; Gu et al., 2022).
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Part IV

Adaptive Data Collection for
Preference Elicitation, Prompt

Designing, and LLM Alignment
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7 optimal design for human preference
elicitation

Reinforcement learning from human feedback (RLHF) has been effective in
aligning and fine-tuning large language models (LLMs) (Rafailov et al., 2023;
Kang et al., 2023; Casper et al., 2023; Shen et al., 2023b; Kaufmann et al.,
2024). The main difference from classic reinforcement learning (RL) (Sutton
and Barto, 2018) is that the agent learns from human feedback, which is
expressed as preferences for different potential choices (Akrour et al., 2012;
Lepird et al., 2015; Sadigh et al., 2017; Bıyık et al., 2020; Wu and Sun, 2023).
The human feedback allows LLMs to be adapted beyond the distribution
of data that was used for their pre-training and generate answers that
are more preferred by humans (Casper et al., 2023). The feedback can be
incorporated by learning a preference model. When the human decides
between two choices, the Bradley-Terry-Luce (BTL) model (Bradley and
Terry, 1952) can be used. For multiple choices, the Plackett-Luce (PL) model
(Plackett, 1975; Luce, 2005) can be adopted. A good preference model
should correctly rank answers to many potential questions. Therefore,
learning of a good preference model can be viewed as learning to rank,
and we adopt this view in this work. Learning to rank has been studied
extensively in both offline (Burges, 2010) and online (Radlinski et al., 2008;
Kveton et al., 2015; Szörényi et al., 2015; Sui et al., 2018; Lattimore et al.,
2018) settings.

To effectively learn preference models, we study efficient methods for
human preference elicitation. We formalize this problem as follows. We
have a set of L lists representing questions, each with K items representing
answers. The objective of the agent is to learn to rank all items in all
lists. The agent can query humans for feedback. Each query is a question
with K answers represented as a list. The human provides feedback on
it. We study two feedback models: absolute and ranking. In the absolute
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feedback model, a human provides noisy feedback for each item in the list.
This setting is motivated by how annotators assign relevance judgments in
search (Hofmann et al., 2013; MS MARCO, 2016). The ranking feedback
is motivated by learning reward models in RLHF (Rafailov et al., 2023;
Kang et al., 2023; Casper et al., 2023; Shen et al., 2023b; Kaufmann et al.,
2024). In this model, a human ranks all items in the list according to
their preferences. While K = 2 is arguably the most common case, we
study K ⩾ 2 for the sake of generality and allowing a higher-capacity
communication channel with the human (Zhu et al., 2023b). The agent
has a budget for the number of queries. To learn efficiently within the
budget, it needs to elicit preferences from the most informative lists, which
allows it to learn to rank all other lists. Our main contribution is an efficient
algorithm for computing the distribution of the most informative lists.

Our work touches on many topics. Learning of reward models from
human feedback is at the center of RLHF (Ouyang et al., 2022) and its re-
cent popularity has led to major theory developments, including analyses
of regret minimization in RLHF (Chen et al., 2022b; Wang et al., 2023c;
Wu and Sun, 2023; Xiong et al., 2023; Opoku-Agyemang, 2023; Saha et al.,
2023). These works propose and analyze adaptive algorithms that interact
with the environment to learn highly-rewarding policies. Such policies are
usually hard to deploy in practice because they may harm user experience
due to over-exploration (Dudík et al., 2014; Swaminathan and Joachims,
2015). Therefore, Zhu et al. (2023b) studied RLHF from ranking feedback
in the offline setting with a fixed dataset. We study how to collect an
informative dataset for offline learning to rank with both absolute and ranking
feedback. We approach this problem as an optimal design, a methodology
for computing optimal information-gathering policies (Pukelsheim, 2006;
Fedorov, 2013). The policies are non-adaptive and thus can be precom-
puted, which is one of their advantages. The main technical contribution
of this work is a matrix generalization of the Kiefer-Wolfowitz theorem
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(Kiefer and Wolfowitz, 1960), which allows us to formulate optimal de-
signs for ranked lists and solve them efficiently. Optimal designs have
become a standard tool in exploration (Lattimore and Szepesvári, 2020a;
Katz-Samuels et al., 2020, 2021; Mukherjee et al., 2022b; Jamieson and Jain,
2022) and adaptive algorithms can be obtained by combining them with
elimination. Therefore, optimal designs are also a natural stepping stone
to other solutions.

We make the following contributions:

1. We develop a novel approach for human preference elicitation. The
key idea is to generalize the Kiefer-Wolfowitz theorem (Kiefer and
Wolfowitz, 1960) to matrices (section 7.3), which then allows us to
compute information-gathering policies for ranked lists.

2. We propose an algorithm that uses an optimal design to collect
absolute human feedback (section 7.4), where a human provides
noisy feedback for each item in the queried list. A least-squares
estimator is then used to learn a preference model. The resulting
algorithm is both computationally and statistically efficient. We
bound its prediction error (section 7.4) and ranking loss (section 7.4),
and show that both decrease with the sample size.

3. We propose an algorithm that uses an optimal design to collect
ranking human feedback (section 7.5), where a human ranks all
items in the list according to their preferences. An estimator of Zhu
et al. (2023b) is then used to learn a preference model. Our approach
is both computationally and statistically efficient, and we bound its
prediction error (section 7.5) and ranking loss (section 7.5). These
results mimic the absolute feedback setting and show the generality
of our framework.

4. We compare our algorithms to multiple baselines in several experi-
ments. We observe that the algorithms achieve a lower ranking loss
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than the baselines.

7.1 Setting
Notation: Let [K] = {1, . . . ,K}. Let ∆L be the probability simplex over [L].
For any distribution π ∈ ∆L, we get

∑L
i=1 π(i) = 1. Let Π2(K) = {(j,k) ∈

[K]2 : j < k} be the set of all pairs over [K] where the first entry is lower
than the second one. Let ∥x∥2

A = x⊤Ax for any positive-definite A ∈ Rd×d

and x ∈ Rd. We use Õ for the big-O notation up to logarithmic factors.
Specifically, for any function f, we write Õ(f(n)) if it is O(f(n) logk f(n))
for some k > 0. Let supp (π) be the support of distribution π or a random
variable.

Setup: We learn to rank L lists, each with K items. An item k ∈ [K] in
list i ∈ [L] is represented by a feature vector xi,k ∈ X, where X ⊆ Rd is
the set of feature vectors. The relevance of items is given by their mean
rewards. The mean reward of item k in list i is x⊤

i,kθ∗, where θ∗ ∈ Rd is
an unknown parameter. Without loss of generality, we assume that the
original order of the items is optimal, x⊤

i,jθ∗ > x⊤
i,kθ∗ for any j < k and list i.

The agent does not know it. The agent interacts with humans for n rounds.
At round t, it selects a list It and the human provides stochastic feedback
on it. Our goal is to design a policy for selecting the lists such that the
agent learns the optimal order of all items in all lists after n rounds.

Feedback model: We study two models of human feedback, absolute
and ranking:

(1) In the absolute feedback model, the human provides a reward for each
item in list It chosen by the agent. Specifically, the agent observes noisy
rewards

yt,k = x⊤
It,kθ∗ + ηt,k , (7.1)

for all k ∈ [K] in list It, where ηt,k is independent zero-mean 1-sub-
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Gaussian noise. This feedback is stochastic and similar to that in the
document-based click model (Chuklin et al., 2022).

(2) In the ranking feedback model, the human orders all K items in list
It selected by the agent. The feedback is a permutation σt : [K] → [K],
where σt(k) is the index of the k-th ranked item. The probability that this
permutation is generated is

p(σt) =

K∏
k=1

exp[x⊤
It,σt(k)θ∗]∑K

j=k exp[x⊤
It,σt(j)θ∗]

. (7.2)

Simply put, items with higher mean rewards are more preferred by hu-
mans and hence more likely to be ranked higher. This feedback model is
known as the Plackett-Luce (PL) model (Plackett, 1975; Luce, 2005; Zhu
et al., 2023b), and it is a standard assumption when learning values of
individual choices from relative feedback. Since the feedback at round t is
with independent noise, in both (7.1) and (7.2), any list can be observed
multiple times and we do need to assume that n ⩽ L.

Objective: At the end of round n, the agent outputs a permutation
σ̂n,i : [K] → [K] for all lists i ∈ [L], where σ̂n,i(k) is the item placed at
position k in list i. Our evaluation metric is the ranking loss after n rounds,
which we define as

Rn =

L∑
i=1

K∑
j=1

K∑
k=j+1

1{σ̂n,i(j) > σ̂n,i(k)} . (7.3)

The loss is the number of incorrectly ordered pairs of items in permutation
σ̂n,i, summed over all lists i ∈ [L]. It can also be viewed as the Kendall tau
rank distance (Kendall, 1948) between the optimal order of items in all
lists and that according to σ̂n,i. We note that other ranking metrics exist,
such as the normalized discounted cumulative gain (NDCG) (Wang et al.,
2013) and mean reciprocal rank (MRR) (Voorhees, 1999). Our work can be



149

extended to them and we leave this for future work.
The two closest related works are Mehta et al. (2023) and Das et al.

(2024). They proposed algorithms for learning to rank L pairs of items
from pairwise feedback. Their optimized metric is the maximum gap
over the L pairs. We learn to rank L lists of K items from K-way ranking
feedback. We bound the maximum prediction error, which is a similar
metric to the prior works, and the ranking loss in (7.3), which is novel.
Our setting is related to other bandit settings as follows. Due to the budget
n, it is similar to fixed-budget best arm identification (BAI) (Bubeck et al.,
2009; Audibert et al., 2010; Azizi et al., 2022; Yang and Tan, 2022). The
main difference is that we do not want to identify the best arm. We want
to sort L lists of K items. Online learning to rank has also been studied
extensively (Radlinski et al., 2008; Kveton et al., 2015; Zong et al., 2016; Li
et al., 2016; Lagree et al., 2016). We do not minimize cumulative regret or
try to identify the best arm. A more detailed comparison is in section 7.2.

We introduce optimal designs (Pukelsheim, 2006; Fedorov, 2013) next.
This allows us to minimize the expected ranking loss within a budget of n
rounds efficiently.

7.2 Related Work
The two closest related works are Mehta et al. (2023) and Das et al. (2024).
They proposed algorithms for learning to rank L pairs of items from pair-
wise feedback. Their optimized metric is the maximum gap over L pairs.
We learn to rank L lists of K items from K-way ranking feedback. We
bound the maximum prediction error, which is a similar metric to these
related works, and the ranking loss in (7.3), which is novel. Algorithm
APO in Das et al. (2024) is the closest related algorithmic design. APO
greedily minimizes the maximum error in pairwise ranking of L lists of
length K = 2. Therefore, Dope with ranking feedback (section 7.5) can be
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viewed as a generalization of Das et al. (2024) to lists of length K ⩾ 2. APO
can be compared to Dope by applying it to all possible

(
K
2

)
L lists of length

2 created from our lists of length K. We do that in APO in section 7.6. The
last difference from Das et al. (2024) is that they proposed two variants
of APO: analyzed and practical. We propose a single algorithm, which is
both analyzable and practical.

Our problem can be generally viewed as learning preferences from
human feedback (Fürnkranz and Hüllermeier, 2003; Glass, 2006; Houlsby
et al., 2011). The two most common forms of feedback are pairwise, where
the agent observes a preference over two items (Bradley and Terry, 1952);
and ranking, where the agent observes a ranking of the items (Plackett,
1975; Luce, 2005). Online learning from human feedback has been studied
extensively. In online learning to rank Radlinski et al. (2008); Zoghi et al.
(2017), the agent selects a list of K items and the human provides absolute
feedback, in the form of clicks, on all recommended items or their subset.
Two popular feedback models are cascading (Kveton et al., 2015; Zong
et al., 2016; Li et al., 2016) and position-based (Lagree et al., 2016; Ermis
et al., 2020; Zhou et al., 2023) models. The main difference in section 7.4
is that we do not minimize cumulative regret or try to identify the best
list of K items. We learn to rank L lists of K items within a budget of n
observations. Due to the budget, our work is related to fixed-budget BAI
(Bubeck et al., 2009; Audibert et al., 2010; Azizi et al., 2022; Yang and Tan,
2022). The main difference is that we do not aim to identify the best arm.

Online learning from preferential feedback has been studied exten-
sively (Bengs et al., 2021) and is often formulated as a dueling bandit (Yue
et al., 2012; Lekang and Lamperski, 2019; Xu et al., 2020a; Kirschner and
Krause, 2021; Pasztor et al., 2024; Saha, 2021; Saha and Krishnamurthy,
2022; Saha and Gaillard, 2022; Saha et al., 2023; Takeno et al., 2023; Xu et al.,
2024b). Our work on ranking feedback (section 7.5) differs from these
works in three main aspects. First, most dueling bandit papers consider
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pairwise feedback (K = 2) while we study a more general setting of K ⩾ 2.
Second, a classic objective in dueling bandits is to minimize regret with
respect to the best arm, sometimes in context; either in a cumulative or
simple regret setting. We do not minimize cumulative or simple regret.
We learn to rank L lists of K items. Finally, the acquisition function in
dueling bandits is adaptive and updated in each round. Dope is a static
design where the exploration policy is precomputed.

Preference-based learning has also been studied in a more general
setting of reinforcement learning (Wirth et al., 2017; Novoseller et al., 2020;
Xu et al., 2020b; Hejna and Sadigh, 2023). Preference-based RL differs
from classic RL by learning human preferences through non-numerical
rewards (Christiano et al., 2017; Lee et al., 2021; Chen et al., 2022b). Our
work can be also viewed as collecting human feedback for learning policies
offline (Jin et al., 2021; Rashidinejad et al., 2021; Zanette et al., 2021; Sekhari
et al., 2024). One of the main challenges of offline learning is potentially
insufficient data coverage. We address this by collecting diverse data,
using optimal designs (Pukelsheim, 2006; Fedorov, 2013).

Finally, we wanted to compare the ranking loss in (7.3) to other ob-
jectives. There is no reduction to dueling bandits. A classic objective in
dueling bandits is to minimize regret with respect to the best arm from dueling
feedback. Our goal is to rank L lists. One could think that our problem can
be solved as a contextual dueling bandit, where each list is represented
as a context. This is not possible because the context is controlled by the
environment. In our setting, the agent controls the chosen list, similarly to
APO in Das et al. (2024). Our objective also cannot be reduced to fixed-
budget BAI. Our comparisons to Azizi et al. (2022) (sections 7.4 and 7.5)
focus on similarities in high-probability bounds. The dependence on n
and d is expected to be similar because the probability of making a mistake
in Azizi et al. (2022) and a ranking error in our work depend on how well
the generalization model is estimated, which is the same in both works.
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7.3 Optimal Design and Matrix
Kiefer-Wolfowitz

This section introduces a unified approach to human preference elicitation
from both absolute and ranking feedback. First, we note that to learn the
optimal order of items in all lists, the agent has to estimate the unknown
model parameter θ∗ well. In this work, the agent uses a maximum-likelihood
estimator (MLE) to obtain an estimate θ̂n of θ∗. After that, it orders the
items in all lists according to their estimated mean rewards x⊤

i,kθ̂n in
descending order to get the permutation σ̂n,i. If θ̂n would minimize
the prediction error (x⊤

i,k(θ̂n − θ∗))
2 over all items k ∈ [K] in list i, the

permutation σ̂n,i would be closer to the optimal order. Moreover, if θ̂n
minimized the maximum error over all lists, all permutations would be
closer and the ranking loss in (7.3) would be minimized. This is why we
focus on minimizing the maximum prediction error

max
i∈[L]

∑
a∈Ai

(a⊤(θ̂n − θ∗))
2 = max

i∈[L]
Tr(A⊤

i (θ̂n − θ∗)(θ̂n − θ∗)
⊤Ai) , (7.4)

where Ai is a matrix representing list i and a ∈ Ai is a column in it. In the
absolute feedback model, the columns of Ai are feature vectors of items in
list i (section 7.4). In the ranking feedback model, the columns of Ai are
the differences of feature vectors of items in list i (section 7.5). Therefore,
Ai depends on the type of human feedback. In fact, as we show later, it
is dictated by the covariance of θ̂n in the corresponding human feedback
model. We note that the objective in (7.4) is worst-case over lists and that
other alternatives, such as 1

L

∑L
i=1

∑
a∈Ai(a

⊤(θ̂n − θ∗))
2, may be possible.

We leave this for future work.
We prove in sections 7.4 and 7.5 that the agent can minimize the maxi-

mum prediction error in (7.4) and the ranking loss in (7.3) by sampling
from a fixed distribution π∗ ∈ ∆L. That is, the probability of selecting list i
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at round t is P (It = i) = π∗(i). The distribution π∗ is a minimizer of

g(π) = max
i∈[L]

Tr(A⊤
i V−1

π Ai) , (7.5)

where Vπ =
∑L
i=1 π(i)AiA⊤

i is a design matrix. The optimal design aims
to find the distribution π∗. Since (7.5) does not depend on the received
feedback, our algorithms are not adaptive.

The problem of finding π∗ that minimizes (7.5) is called the G-optimal
design Lattimore and Szepesvári (2020a). The minimum of (7.5) and the
support of π∗ are characterized by the Kiefer-Wolfowitz theorem Kiefer
and Wolfowitz (1960); Lattimore and Szepesvári (2020a). The original
theorem is for least-squares regression, where Ai are feature vectors. At a
high level, it says that the smallest ellipsoid that covers all feature vectors
has the minimum volume, and in this way relates the minimization of
(7.5) to maximizing log det(Vπ). We generalize this claim to lists, where
Ai is a matrix of feature vectors representing list i. This generalization
allows us to go from a design over feature vectors to a design over lists
represented by matrices.

Theorem 7.1 (Matrix Kiefer-Wolfowitz). Let M ⩾ 1 be an integer and
A1, . . . , AL ∈ Rd×M be L matrices whose column space spans Rd. Then the
following claims are equivalent:

(a) π∗ is a minimizer of g(π) defined in (7.5).

(b) π∗ is a maximizer of f(π) = log det(Vπ).

(c) g(π∗) = d.

Furthermore, there exists a minimizer π∗ of g(π) such that |supp (π∗) | ⩽ d(d+

1)/2.

Proof. We generalize the proof of the Kiefer-Wolfowitz theorem in Latti-
more and Szepesvári (2020a). The key observation is that even if Ai is a
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matrix and not a vector, the design matrix Vπ is positive definite. Using
this, we establish three key facts that are used in the original proof. First,
we show that f(π) is concave in π and that (∇f(π))i = Tr(A⊤

i V−1
π Ai) is

its gradient with respect to π(i). Second,
∑L
i=1 π(i)Tr(A⊤

i V−1
π Ai) = d.

Finally, we prove that g(π) ⩾
∑L
i=1 π(i)Tr(A⊤

i V−1
π Ai). The complete proof

is in section F.1.

From the equivalence in theorem 7.1, it follows that the agent should
solve the optimal design

π∗ = argmax
π∈∆L

f(π) = argmax
π∈∆L

log det(Vπ) (7.6)

and sample according to π∗ to minimize the maximum prediction error
in (7.4). Note that the optimal design over lists in (7.6) is different from
the one over features (Lattimore and Szepesvári, 2020a). As an example,
suppose that we have 4 feature vectors {xi}i∈[4] and two lists: A1 = (x1, x2)

and A2 = (x3, x4). The list design is over 2 variables (lists) while the
feature-vector design is over 4 variables (feature vectors). The list design
can also be viewed as a constrained feature-vector design, where (x1, x2)

and (x3, x4) are observed together with the same probability.
The optimization problem in (7.6) is convex and thus easy to solve.

When the number of lists is large, the Frank-Wolfe algorithm (Nocedal and
Wright, 1999; Jaggi, 2013) can be applied, which solves convex optimization
problems with linear constraints as a sequence of linear programs. We
use CVXPY (Diamond and Boyd, 2016) to compute the optimal design.
We report its computation time, as a function of the number of lists L, in
section F.4. The computation time scales roughly linearly with the number
of lists L. In the following sections, we utilize theorem 7.1 to bound the
maximum prediction error and ranking loss for both absolute and ranking
feedback.
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7.4 Learning with Absolute Feedback
This section is organized as follows. In section 7.4, we present an algorithm
for human preference elicitation under absolute feedback. We bound its
prediction error in section 7.4 and its ranking loss in section 7.4.

Algorithm Dope

Now we present our algorithm for absolute feedback called D-optimal
preference elicitation (Dope). The algorithm has four main parts. First,
we solve the optimal design problem in (7.6) to get a data logging policy
π∗. The matrix for list i is Ai = [xi,k]k∈[K] ∈ Rd×K, where xi,k is the feature
vector of item k in list i. Second, we collect human feedback for n rounds.
At round t ∈ [n], we sample a list It ∼ π∗ and then observe yt,k for all
k ∈ [K], as defined in (7.1). Third, we estimate the model parameter as

θ̂n = Σ
−1
n

n∑
t=1

K∑
k=1

xIt,kyt,k . (7.7)

The normalized and unnormalized covariance matrices corresponding to
the estimate are

Σn =
1
n
Σn , Σn =

n∑
t=1

K∑
k=1

xIt,kx⊤
It,k , (7.8)

respectively. Finally, we sort the items in all lists i according to their esti-
mated mean rewards x⊤

i,kθ̂n in descending order, to obtain the permutation
σ̂n,i. The pseudo-code of Dope is in algorithm 8.

The estimator (7.7) is the same as in ordinary least squares (OLS), be-
cause each observed list can be treated as K independent observations.
The matrix for list i, Ai, can be related to the inner sum in (7.8) through
Tr(AiA⊤

i ) =
∑K
k=1 xi,kx⊤

i,k. Therefore, our optimal design for absolute feed-
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Algorithm 8 Dope for absolute feed-
back.

1: for i = 1, . . . ,L do
2: Ai ← [xi,k]k∈[K]

3: Vπ ←
∑L
i=1 π(i)AiA⊤

i

4: π∗ ← argmaxπ∈∆L log det(Vπ)
5: for t = 1, . . . ,n do
6: Sample It ∼ π∗
7: for k = 1, . . . ,K do
8: Observe yt,k in (7.1)
9: Compute θ̂n in (7.7)

10: for i = 1, . . . ,L do
11: Set σ̂n,i(k) to item with the

k-th highest mean reward in list
i, x⊤

i,kθ̂n

12: Output: Permutation σ̂n,i for all
i ∈ [L]

Algorithm 9 Dope for ranking feed-
back.

1: for i = 1, . . . ,L do
2: for (j,k) ∈ Π2(K) do
3: zi,j,k ← xi,j − xi,k
4: Ai ← [zi,j,k](j,k)∈Π2(K)

5: Vπ ←
∑L
i=1 π(i)AiA⊤

i

6: π∗ ← argmaxπ∈∆L log det(Vπ)
7: for t = 1, . . . ,n do
8: Sample It ∼ π∗
9: Observe σt in (7.2)

10: Compute θ̂n in (7.10)
11: for i = 1, . . . ,L do
12: Set σ̂n,i(k) to item with the

k-th highest mean reward in list
i, x⊤

i,kθ̂n

13: Output: Permutation σ̂n,i for all
i ∈ [L]

back logs data for a least-squares estimator by optimizing its covariance
Lattimore and Szepesvári (2020a); Jamieson and Jain (2022).

Maximum Prediction Error Under Absolute Feedback

In this section, we bound the maximum prediction error of Dope under
absolute feedback. We start with a lemma that uses the optimal design π∗

to bound maxi∈[L]

∑
a∈Ai ∥a∥

2
Σ

−1
n

.

Lemma 7.2. Let π∗ be the optimal design in (7.6). Fix budget n and let each
allocation nπ∗(i) be an integer. Then maxi∈[L]

∑
a∈Ai ∥a∥

2
Σ

−1
n

= d/n.

The lemma is proved in section F.1. Since all nπ∗(i) are integers, we
note that Σn is full rank and thus invertible. The condition of the lemma,
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that each nπ∗(i) is an integer, does not require n ⩾ L. This is because π∗(i)

has at most d(d+1)/2 non-zero entries (theorem 7.1). This is independent
of the number of lists L, which could also be infinite (Chapter 21.1 in
Lattimore and Szepesvári (2020a)). The integer condition can be also
relaxed by rounding non-zero entries of nπ∗(i) up to the closest integer.
This clearly yields an integer allocation of size at most n + d(d + 1)/2.
All claims in our work would hold for any π∗ and this allocation. With
theorem 7.2 in hand, the maximum prediction error is bounded as follows.

Theorem 7.3 (Maximum prediction error). With probability at least 1 − δ,
the maximum prediction error after n rounds is

max
i∈[L]

Tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) = O
(
d2 + d log(1/δ)

n

)
.

The theorem is proved in section F.1. As in theorem 7.2, we assume that
each allocation nπ∗(i) is an integer. If the allocations were not integers,
rounding errors would arise and need to be bounded (Pukelsheim, 2006;
Fiez et al., 2019; Katz-Samuels et al., 2020). At a high level, our bound
would be multiplied by 1+β for some β > 0 (Chapter 21 in Lattimore and
Szepesvári (2020a)). We omit this factor in our proofs to simplify them.

theorem 7.3 says that the maximum prediction error is Õ(d2/n). Note
that this rate cannot be attained trivially, for instance by uniform sampling.
To see this, consider the following example. Take K = 2. Let xi,1 = (1, 0, 0)
for i ∈ [L − 1] and xL,1 = (0, 1, 0), and xi,2 = (0, 0, 1) for all i ∈ [L]. In
this case, the minimum eigenvalue of Σn is n/L in expectation, because
only one item in list L provides information about the second feature,
xL,1 = (0, 1, 0). Following the same steps as in theorem 7.3, we would
get a rate of Õ(dL/n). Prior works on optimal designs also made similar
observations (Soare et al., 2014).

The rate in theorem 7.3 is the same as in linear models. More specifically,
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by the Cauchy-Schwarz inequality, we would get

(x⊤(θ̂n − θ∗))
2 ⩽ ∥θ̂n − θ∗∥2

Σn
∥x∥2

Σ
−1
n

= Õ(d) Õ(d/n) = Õ(d2/n)

with a high probability, where θ∗, θ̂n, and Σn are the analogous linear
model quantities. This bound holds for infinitely many feature vectors. It
can be tightened to Õ(d/n) for a finite number of feature vectors, where Õ
hides the logarithm of the number of feature vectors. This can be proved
using a union bound over (20.3) in Chapter 20 of Lattimore and Szepesvári
(2020a).

Ranking Loss Under Absolute Feedback

In this section, we bound the expected ranking loss under absolute feed-
back. Recall from section 7.1 that the original order of items in each list is
optimal. With this in mind, the gap between the mean rewards of items j
and k in list i is ∆i,j,k = (xi,j − xi,k)⊤θ∗, for any i ∈ [L] and (j,k) ∈ Π2(K).

Theorem 7.4 (Ranking loss). The expected ranking loss after n rounds is
bounded as

E[Rn] ⩽ 2
L∑
i=1

K∑
j=1

K∑
k=j+1

exp
[
−
∆2
i,j,kn

4d

]
.

Proof. From the definition of the ranking loss, we have

E[Rn] =
L∑
i=1

K∑
j=1

K∑
k=j+1

E[1{σ̂n,i(j) > σ̂n,i(k)}] =

L∑
i=1

K∑
j=1

K∑
k=j+1

P
(

x⊤
i,jθ̂n < x⊤

i,kθ̂n

)
.

where P
(

x⊤
i,jθ̂n < x⊤

i,kθ̂n

)
is the probability of predicting a sub-optimal

item k above item j in list i. We bound this probability from above by
bounding the sum ofP

(
x⊤
i,k(θ̂n − θ∗) >

∆i,j,k
2

)
andP

(
x⊤
i,j(θ∗ − θ̂n) >

∆i,j,k
2

)
.
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Each of these probabilities is bounded from above by exp
[
−
∆2
i,j,kn

4d

]
, using a

concentration inequality in theorem F.2. The full proof is in section F.1.

Each term in theorem 7.4 can be bounded from above by exp
[
−
∆2

minn

4d

]
,

where n is the sample size, d is the number of features, and ∆min denotes
the minimum gap. Therefore, the bound decreases exponentially with
budgetn and gaps, and increases withd. This dependence is similar to that
in Theorem 1 of Azizi et al. (2022) for fixed-budget best-arm identification
in linear models. Yang and Tan (2022) derived a similar bound and a
matching lower bound. The gaps ∆i,j,k reflect the hardness of sorting list
i, which depends on the differences of the mean rewards of items j and k
in it.

Finally, we wanted to note that our optimal designs may not be optimal
for ranking. We have not focused solely on ranking because we see value in
both prediction error (theorem 7.3) and ranking loss (theorem 7.4) bounds.
The fact that we provide both shows the versatility of our approach.

7.5 Learning with Ranking Feedback
This section is organized similarly to section 7.4. In section 7.5, we present
an algorithm for human preference elicitation under ranking feedback. We
bound its prediction error in section 7.5 and its ranking loss in section 7.5.
Our algorithm design and analysis are under the following assumption,
which we borrow from Zhu et al. (2023b).

Assumption 10. We assume that the model parameter satisfies θ∗ ∈Θ, where

Θ = {θ ∈ Rd : θ⊤1d = 0, ∥θ∥2 ⩽ 1} . (7.9)

We also assume that maxi∈[L],k∈[K] ∥xi,k∥2 ⩽ 1.
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The assumption of bounded model parameter and feature vectors is
common in bandits (Abbasi-Yadkori et al., 2011; Lattimore and Szepesvári,
2020a). The additional assumption of θ⊤1d = 0 is from Zhu et al. (2023b),
from which we borrow the estimator and concentration bound.

Algorithm Dope

We present Dope for ranking feedback next. The algorithm is similar to
Dope in section 7.4 and has four main parts. First, we solve the optimal
design problem in (7.6) to get a data logging policy π∗. The matrix for list
i is Ai = [zi,j,k](j,k)∈Π2(K) ∈ Rd×K(K−1)/2, where zi,j,k = xi,j − xi,k denotes
the difference of feature vectors of items j and k in list i. Second, we collect
human feedback for n rounds. At round t ∈ [n], we sample a list It ∼ π∗

and then observe σt drawn from the PL model, as defined in (7.2). Third,
we estimate the model parameter as

θ̂n = argmin
θ∈Θ

ℓn(θ) , ℓn(θ) = −
1
n

n∑
t=1

K∑
k=1

log
(

exp[x⊤
It,σt(k)θ]∑K

j=k exp[x⊤
It,σt(j)θ]

)
,

(7.10)

where Θ is defined in assumption 10. We solve this estimation problem us-
ing iteratively reweighted least squares (IRLS) (Wolke and Schwetlick, 1988),
a popular method for fitting the parameters of generalized linear models
(GLMs). Finally, we sort the items in all lists i according to their estimated
mean rewards x⊤

i,kθ̂n in descending order, to obtain the permutation σ̂n,i.
The pseudo-code of Dope is in algorithm 9.

The optimal design for (7.10) is derived as follows. First, we derive
the Hessian of ℓn(θ), ∇2ℓn(θ), in theorem F.3. The optimal design with
∇2ℓn(θ) cannot be solved exactly because ∇2ℓn(θ) depends on an un-
known model parameter θ. To get around this, we eliminate θ-dependent
terms by bounding them from below. Many prior works on decision mak-
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ing under uncertainty with GLMs took this approach (Filippi et al., 2010b;
Li et al., 2017a; Zhu et al., 2023b; Das et al., 2024; Zhan et al., 2024). We
derive normalized and unnormalized covariance matrices

Σn =
2

K(K− 1)nΣn , Σn =

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz⊤
It,j,k , (7.11)

and prove that ∇2ℓn(θ) ⪰ γΣn for some γ > 0. Therefore, we can maxi-
mize log det(∇2ℓn(θ)), for any θ ∈ Θ, by maximizing log det(Σn). The
matrix for list i, Ai, can be related to the inner sum in (7.11) through
Tr(AiA⊤

i ) =
∑K
j=1

∑K
k=j+1 zi,j,kz⊤

i,j,k.
The cost for our approximation is a constant factor of C > 0 in our

bounds (theorems 7.5 and 7.6). In section F.3, we discuss a more adaptive
design and also compare to it empirically. We conclude that it would
be harder to implement and analyze, and we do not observe empirical
benefits at K = 2.

Maximum Prediction Error Under Ranking Feedback

In this section, we bound the maximum prediction error of Dope under
ranking feedback. Similarly to the proof of theorem 7.3, we decompose
the error into two parts, which capture the efficiency of the optimal design
and the uncertainty in the MLE θ̂n.

Theorem 7.5 (Maximum prediction error). With probability at least 1 − δ,
the maximum prediction error after n rounds is

max
i∈[L]

Tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) = O
(
K6(d2 + d log(1/δ))

n

)
.

This theorem is proved in section F.1. We build on a self-normalizing
bound of Zhu et al. (2023b), ∥θ̂n−θ∗∥2

Σn
⩽ O

(
K4(d+log(1/δ))

n

)
, which may

not be tight in K. If the bound could be improved by a multiplicative
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c > 0, we would get a multiplicative c improvement in theorem 7.5. We
remind the reader that if the allocationsnπ∗(i) are not integers, a rounding
procedure is needed (Pukelsheim, 2006; Fiez et al., 2019; Katz-Samuels
et al., 2020). This would result in a multiplicative 1+β factor in our bound,
for some β > 0. For simplicity, we omit this factor in our derivations.

Ranking Loss Under Ranking Feedback

In this section, we bound the expected ranking loss under ranking feedback.
Similarly to section 7.4, we define the gap between the mean rewards of
items j and k in list i as ∆i,j,k = z⊤

i,j,kθ∗, where zi,j,k = xi,j − xi,k is the
difference of feature vectors of items j and k in list i.

Theorem 7.6 (Ranking loss). The expected ranking loss after n rounds is
bounded as

E[Rn] ⩽
L∑
i=1

K∑
j=1

K∑
k=j+1

exp
[
−
∆2
i,j,kn

CK4d
+ d

]
,

where C > 0 is a constant.

Proof. The proof is similar to theorem 7.4. At the end of roundn, we bound
the probability that a sub-optimal item k is ranked above item j. The proof
has two parts. First, for any list i ∈ [L] and items (j,k) ∈ Π2(K), we show
that P

(
x⊤
i,jθ̂n < x⊤

i,kθ̂n

)
= P

(
z⊤
i,j,k(θ∗ − θ̂n) > ∆i,j,k

)
. Then we bound

this quantity by exp
[
−
∆2
i,j,kn

CK4d + d
]
. The full proof is in section F.1.

The bound in theorem 7.6 is similar to that in theorem 7.4, with the
exception of multiplicative K−4 and additive d. The leading term inside
the sum can be bounded by exp

[
−
∆2

minn

CK4d

]
, where n is the sample size, d is

the number of features, and ∆min is the minimum gap. Therefore, similarly
to theorem 7.4, the bound decreases exponentially with budget n and
gaps; and increases with d. This dependence is similar to Theorem 2 of
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Azizi et al. (2022) for fixed-budget best-arm identification in GLMs. Our
bound does not involve the extra factor of κ > 0 because we assume that
all vectors lie in a unit ball (assumption 10).

7.6 Experiments
The goal of our experiments is to evaluate Dope empirically and compare
it to baselines. All methods estimate θ̂n using (7.7) or (7.10), depending
on the feedback. To guarantee that these problems are well defined, even
when the sample covariance matrix is not full rank, we regularize both
objectives with γ∥θ∥2

2, for a small γ > 0. This mostly impacts small sample
sizes. Specifically, since the optimal design leads to policies that collect
diverse feature vectors, the sample covariance matrix is likely to be full
rank when the sample size is large. After θ̂n is estimated, each method
ranks items in all lists based on their estimated mean rewards x⊤

i,kθ̂n. The
performance of all methods is measured by their ranking loss in (7.3)
divided by L. All experiments are averaged over 100 independent runs,
and we report results in fig. 7.1. We compare the following algorithms:

(1) Dope: This is our method. We solve the optimal design problem
in (7.6) and then sample lists It according to π∗.

(2) Uniform: This baseline chooses lists It uniformly at random from
[L]. While simple, it is known to be competitive in real-world problems
where feature vectors may cover the feature space close to uniformly (Ash
et al., 2019; Yuan et al., 2020; Ash et al., 2021; Ren et al., 2021).

(3) Avg-Design: The exploration policy is an optimal design over
feature vectors. The feature vector of list i is the mean of the feature
vectors of all items in it, x̄i = 1

K

∑K
k=1 xi,k. After the design is computed,

we sample lists It according to it. The rest is the same as in Dope. This
baseline shows that our list representation with multiple feature vectors
can outperform more naive choices.
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(b) Ranking feedback

50 100 150 200 250 300 350 400 450 500
Number of logged interactions

0.0

0.5

1.0

1.5

2.0

Ra
nk

in
g 

lo
ss

Unif
Dope (Ours)
Avg Design
Clustered Design
APO

(c) Nectar dataset
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(d) Anthropic dataset

Figure 7.1: Ranking loss of all compared methods plotted as a function
of the number of rounds. The error bars are one standard error of the
estimates.

(4) Clustered-Design: This approach uses the same representation as
Avg-Design. The difference is that we cluster the lists using k-medoids.
Then we sample lists It uniformly at random from the cluster centroids.
The rest is the same as in Avg-Design. This baseline shows that Dope
outperforms other notions of diversity, such as obtained by clustering. We
tune k (k = 10 in the Nectar dataset and k = 6 otherwise) and report only
the best results.

(5) APO: This method was proposed in Das et al. (2024) and is the
closest related work. APO greedily minimizes the maximum error in
pairwise ranking of L lists of length K = 2. We extend it to K > 2 as
follows. First, we turn L lists of length K into

(
K
2

)
L lists of length 2, one for
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each pair of items in the original lists. Then we apply APO to these
(
K
2

)
L

lists of length 2.
Pure exploration algorithms are often compared to cumulative regret

baselines (Bubeck et al., 2009; Audibert et al., 2010). Since our problem
is a form of learning to rank, online learning to rank (OLTR) baselines
(Radlinski et al., 2008; Kveton et al., 2015; Zong et al., 2016) seem natural.
We do not compare to them for the following reason. The problem of
an optimal design over lists is to design a distribution over queries. All
OLTR algorithms solve a different problem, return a ranked list of items
conditioned on a query chosen by the environment. Since they do not
choose the queries, they cannot solve our problem.

Synthetic experiment 1 (absolute feedback): We have L = 400 ques-
tions and represent them by random vectors qi ∈ [−1, 1]6. Each question
has K = 4 answers. For each question, we generate K random answers
ai,k ∈ [−1, 1]6. Both the question and answer vectors are normalized to
unit length. For each question-answer pair (i,k), the feature vector is
xi,k = vec(qia⊤

i,k) and has length d = 36. The outer product captures
cross-interaction terms of the question and answer representations. A
similar technique has been used for feature preprocessing of the Yahoo!
Front Page Today Module User Click Log Dataset (Li et al., 2010, 2011;
Zhu et al., 2021; Baek and Farias, 2023). We choose a random θ∗ ∈ [0, 1]d.
The absolute feedback is generated as in (7.1). Our results are reported in
fig. 7.1a. We note that the ranking loss of Dope decreases the fastest among
all methods, with Uniform, Avg-Design, and APO being close second.

Synthetic experiment 2 (ranking feedback): This experiment is simi-
lar to the first experiment, except that the feedback is generated by the PL
model in (7.2). Our results are reported in fig. 7.1b and we observe again
that the ranking loss of Dope decreases the fastest. The closest baselines
are Uniform, Avg-Design, and APO. Their lowest ranking loss (n = 100)
is attained by Dope at n = 60, which is nearly a two-fold reduction in
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sample size. In section F.4, we conduct additional studies on this problem.
We vary the number of lists L and items K, and report the computation
time and ranking loss.

Experiment 3 (Nectar dataset): The Nectar dataset (Zhu et al., 2023a)
is a dataset of 183k questions, each with 7 answers. We take a subset of
this dataset: L = 2 000 questions and K = 5 answers. The answers are
generated by GPT-4, GPT-4-0613, GPT-3.5-turbo, GPT-3.5-turbo-instruct,
and Anthropic models. We embed the questions and answers in 768
dimensions using Instructor embeddings (Su et al., 2022). Then we project
them to R10 using a random projection matrix. The feature vector for
answer k to question i is xi,k = vec(qia⊤

i,k), where qi and ai,k are the
projected embeddings of question i and answer k, respectively. Hence
d = 100. The ranking feedback is simulated using the PL model in (7.2).
We estimate its parameter θ∗ ∈ Rd from the ranking feedback in the
dataset using the MLE in (7.10). Our results are reported in fig. 7.1c. We
observe that the ranking loss of Dope is the lowest. The closest baseline
is APO. Its lowest ranking loss (n = 500) is attained by Dope at n = 150,
which is more than a three-fold reduction in sample size.

Experiment 4 (Anthropic dataset): The Anthropic dataset (Bai et al.,
2022) is a dataset of 161k questions with two answers per question. We
take a subset of L = 2 000 questions. We embed the questions and answers
in 768 dimensions using Instructor embeddings (Su et al., 2022). Then we
project them to R6 using a random projection matrix. The feature vector
for answer k to question i is xi,k = vec(qia⊤

i,k), where qi and ai,k are the
projected embeddings of question i and answer k, respectively. Hence
d = 36. The ranking feedback is simulated using the PL model in (7.2).
We estimate its parameter θ∗ ∈ Rd from the ranking preference feedback
in the dataset using the MLE in (7.10). Our results are reported in fig. 7.1d.
We note again that the ranking loss of Dope is the lowest. The closest
baselines are Uniform, Avg-Design, and APO. Their lowest ranking loss
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(n = 1 000) is attained by Dope at n = 300, which is more than a three-fold
reduction in sample size.

7.7 Conclusions
We study the problem of optimal human preference elicitation for learn-
ing preference models. The problem is formalized as learning to rank K
answers to L questions under a budget on the number of asked questions.
We consider two feedback models: absolute and ranking. The absolute
feedback is motivated by how humans assign relevance judgments in
search (Hofmann et al., 2013; MS MARCO, 2016). The ranking feedback
is motivated by learning reward models in RLHF (Kaufmann et al., 2024;
Rafailov et al., 2023; Kang et al., 2023; Casper et al., 2023; Shen et al., 2023b;
Chen et al., 2023). We address both settings in a unified way. The key
idea in our work is to generalize optimal designs (Kiefer and Wolfowitz,
1960; Lattimore and Szepesvári, 2020a), a methodology for computing
optimal information-gathering policies, to ranked lists. After the human
feedback is collected, we learn preference models using existing estimators.
Our method is statistically efficient, computationally efficient, and can
be analyzed. We bound its prediction errors and ranking losses, in both
absolute and ranking feedback models, and evaluate it empirically to show
that it is practical.

Our work can be extended in several directions. First, we study only
two models of human feedback: absolute and ranking. However, many
feedback models exist (Jeon et al., 2020). One common property of these
models is that learning of human preferences can be formulated as likeli-
hood maximization. In such cases, an optimal design exists and can be
used for human preference elicitation, exactly as in our work. Second,
while we bound the prediction errors and ranking losses of Dope, we do
not derive matching lower bounds. Therefore, although we believe that
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Dope is near optimal, we do not prove it. Third, we want to extend our
methodology to the fixed-confidence setting. Finally, we want to apply
our approach to learning a reward model in the LLM and evaluate it.
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8 optimal design for adaptive in-context prompt
design in large language models

Large language models (LLMs), such as Vicuna (Chiang et al., 2023),
Falcon-40B (Penedo et al., 2023), and OpenLLaMA (Touvron et al., 2023)
are applied in mainly two ways: fine-tuning and prompt designing. In fine-
tuning, the LLM weights are adapted to a downstream task (Devlin et al.,
2018). Fine-tuning can easily incorporate domain knowledge that a pre-
trained model may not possess and resembles classic inductive inference.
Fine-tuned models often do not need carefully designed prompts, which
makes them easier to deploy. The main drawback of fine-tuning is that
it can be costly, because tens of thousands of training examples may be
needed to fine-tune billions of parameters of the LLM (Ding et al., 2023).
In prompt designing, the LLM weights are fixed and the LLM is given
query-specific examples at inference time that affect its output (Lester et al.,
2021). This ability to conduct in-context inference is one of the emergent
abilities of LLMs. Prompt designing does not require large training sets.
It is also preferred when query-specific examples are private or change
over time, and thus can only be utilized at inference time.

Prior works on prompt designing mainly focus on hard prompts, which
are carefully handcrafted to get the desired output. This can be time-
consuming and fragile, as minor prompt modifications can lead to a
significant performance drop on the downstream task (Suzgun et al.,
2022). In contrast, Zhang et al. (2022a,b) and Diao et al. (2023) explored
adaptive prompt design using clustering-based and uncertainty-reducing
approaches. While these approaches offer some benefits, we argue that
optimal designs (Pukelsheim, 2006; Fedorov, 2013) can outperform them
by effectively balancing uncertainty and diversity. Similarly to Zhang et al.
(2022a,b) and Diao et al. (2023), we propose a framework for adaptive
prompt design called active in-context prompt design (AIPD). The key idea is
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to design the LLM prompt by adaptively choosing few-shot examples for a
set of test examples at inference time. The examples are initially unlabeled
and we obtain labels for the most informative ones, which maximally
reduce the uncertainty in the LLM prediction for all test examples. We
assume that the observed labels are collected from experts (human-in-the-
loop) or revealed by an oracle (Dasgupta, 2005; Hanneke et al., 2014). The
focus on informativeness and diversity ensures efficient label acquisition
by selecting the best examples. This reduces reliance on limited and costly
resources such as expert labeling.

One motivating example for our work is theme recognition, where the
goal is to identify a unifying theme for a set of items (e.g., movies, grocery
items, or books) provided by the user. For example, let the test query be
a triplet of movie titles “Lion King”, “Jungle Book”, and “Tarzan”, and
the goal is that the LLM should infer a plausible common theme such as
“Disney animated movies”, “Children’s movies”, or “Movies with deep
connections with nature”. This task is challenging due to the inherent
ambiguity and many plausible themes. To address this, we can give the
LLM a few informative examples of triplets of movies and their common
themes as training examples in context that can guide it towards the correct
theme for the test query. This inherently requires a human-in-the-loop
who can go over the set of triplets of movies and label their common
theme for each example which can be costly. Hence, it is critical to narrow
down to a few informative examples from exponentially many training
examples possible for vast amounts of data like movies. Finally note that by
exposing the LLM to these training examples, we refine its understanding
of the task, improve handling of ambiguity, and thus improve its ability to
identify the common theme for unseen test examples. To address the above
challenges, we propose a framework for adaptive prompt design called
active in-context prompt design (AIPD). Our framework is general and
can be easily extended to any active supervised-learning task, like active
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regression (Gao and Koller, 2011) and active classification (Gao and Koller,
2011). At a high level, we treat the LLM as a general inference machine
(Brown et al., 2020; Mirchandani et al., 2023) that is shown adaptively-
chosen examples with labels at inference time. The LLM then utilizes
them to answer any set of related test examples. The key idea is to choose
the next example to label such that we maximally reduce the estimated
uncertainty of the answer to the test examples. We focus on designing
algorithms with the following two properties: (1) Implementable in any
LLM that can be queried efficiently. The parameters of the LLM do not
change or have to be observed. (2) Analyzable in simple models. In this
work, we use linear models to motivate and analyze our algorithms.

We now state the main contributions of our work:
(1) We propose a G-Optimal design algorithm (GO). The key idea

in GO is to retrieve the examples to label that are closest to the set of test
examples in the inference task. Our main contribution is the right notion
of closeness, based on posterior covariance in a simpler model. GO is
implementable with any LLM that can be sampled from, and does not
require access to model parameters, feature embeddings of the LLM, or
its gradients.

(2) We propose a Simulation-Based Active Learning algorithm (SAL).
SAL uses simulation to estimate the impact of labeling unlabeled examples
on uncertainty of the example in the inference task. SAL is also imple-
mentable with any LLM that can be sampled from.

(3) GO is motivated by optimal designs in linear models (Kiefer and
Wolfowitz, 1960; Pukelsheim, 2006). This allows us to analyze GO in
linear models (Theorem 8.1). Our proof is a major departure from similar
analyses in fixed-budget best-arm identification in bandits (Azizi et al.,
2022; Yang and Tan, 2022), for instance because we directly analyze the
discrete allocation problem and each unlabeled example can be labeled at
most once. We discuss this in detail right after Theorem 8.1. SAL is more
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general than GO because it does not make any linear model assumption
in its design. We show that SAL and GO are equivalent in linear models
in Theorem 8.2.

(4) We evaluate GO and SAL on UCI (Markelle Kelly, 1988) and
OpenML (Vanschoren et al., 2013) regression and classification tasks,
custom NLP datasets, abstract reasoning corpus (ARC) tasks (Alford,
2021; Mirchandani et al., 2023), and Probabilistic Context Free Grammar
(PCFG) tasks (Hupkes et al., 2020). GO and SAL consistently outperform
other active prompt designing methods (Zhang et al., 2022a,b; Diao et al.,
2023) for choosing few-shot examples in majority of the tasks.

We advance the understanding of active in-context prompt design in
LLMs and develop a practical methodology for adaptive prompt design.
To our knowledge, this is the first paper that analyzes optimal design based
prompting approaches that correctly balance uncertainty and diversity-
based sampling as opposed to other existing adaptive prompting-based
approaches (Zhang et al., 2022a,b; Diao et al., 2023).

This chapter is organized as follows. section 8.1 introduces the problem
setting. section 8.3 presents our methods and discusses their properties.
section 8.4 is devoted to analyzing our methods. section 8.5 validates
our approach empirically. We review related work in detail in section 8.2.
Finally, section 8.6 summarizes our contributions and suggests avenues
for future work.

8.1 Setting
We pose the problem of adaptive prompt design as active learning. We
adopt the following standard active learning terminology (Lewis, 1995;
Tong and Koller, 2001; Dasgupta, 2005; Dasgupta et al., 2007; Hanneke
et al., 2014). We have a d-dimensional feature space X ⊂ Rd and a dy-
dimensional label space Y ⊆ Rdy . A labeled example is a pair (x, Y) ∈ X×Y.
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The feature vectors and labels are related as Y = f(x,θ∗) + ε, where f
is an underlying model, θ∗ is its parameter, and ε is an independent zero-
mean noise vector. Our goal is to learn to estimate f on test examples by
labeling training examples. We have a budget T on the maximum number
of training examples that can be labeled. This constraint can arise due to
multiple reasons. For instance, human labels may be necessary and they
are naturally costly. Another reason may be that the machine learning
model has a limited capacity for including labeled examples, such as the
length of prompts in LLMs (Zhang et al., 2022a,b; Diao et al., 2023).

Now we introduce our notation in detail. Denote [m] = {1, 2, . . . ,m}.
We have n training examples Xexamples = {x1, . . . , xn} and K test examples
X∗ = {x∗,1, . . . , x∗,K}. We assume that both sets are related, such as being
sampled from the same distribution. The label of the test example x∗,k is
Y∗,k. In our motivating theme recognition example the training examples xi
and test example x∗,k is a concatenation of triplets of movies, and the label
Yi or Y∗,k is the common theme amongst the triplets respectively. We want
to infer Y∗,k for all k ∈ [K]without explicitly modeling the complex function
f. We model the function using an LLM which we treat as a general
inference machine because of its large representation capacity (Brown
et al., 2020; Mirchandani et al., 2023). Specifically, let Ht = {(Xℓ, Yℓ)}ℓ∈[t−1]

be a set of t− 1 previously labeled examples, where Xℓ ∈ Xexamples is the
ℓ-th labeled example and Yℓ is its label. Then we denote by p(· | x,Ht)
the distribution over labels of an LLM for a queried example x when Ht
is used as few-shot in-context examples. To implement this in the LLM,
we simply concatenate x and Ht in context (Zhang et al., 2022a,b; Diao
et al., 2023). We know that in-context examples affect the distribution
of responses of an LLM (Xie et al., 2021; Suzgun et al., 2022; Deng et al.,
2023; Lee et al., 2023). So, the problem of learning f under a budget T can
be viewed as selecting HT+1 such that p(Y∗,k | x∗,k,HT+1) is high for all
test examples k ∈ [K]. This problem is challenging, especially when the
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training examples need to be labeled.
To effectively reduce the uncertainty of Y∗,k | x∗,k,HT+1, we need to

quantify it. One possibility it to use the entropy−EY∗,k∼p(·|x∗,k,HT+1)[log p(Y∗,k |

x∗,k,HT+1)]. This is problematic because the entropy is hard to estimate
for high-dimensional random variables (Vershynin, 2020), especially with-
out having access to p(· | x∗,k,HT+1) beyond sampling from it. This is
a shortcoming of recent adaptive prompting techniques (Zhang et al.,
2022a,b; Diao et al., 2023). Therefore, we propose using the covariance
of Y∗,k | x∗,k,HT+1 as the uncertainty measure. Specifically, we measure
the uncertainty of the k-th test example by tr(cov[Y∗,k | x∗,k,HT+1]) and
the uncertainty over all test examples by maxk∈[K] tr(cov[Y∗,k | x∗,k,HT+1]).
Since the trace of the covariance is the sum of the variances in individual
dimensions, our objective can be interpreted as minimizing the maximum
variance over the predicted labels of all test examples. This is a natu-
ral measure of uncertainty in linear models and corresponding optimal
designs (Pukelsheim, 2006; Fedorov, 2013).

Before we present our algorithms, we wanted to outline their general
design. Given a budget T , we design sequential adaptive algorithms over
T rounds, where the example Xt ∈ Xexamples in round t ∈ [T ] is chosen as a
function of Ht = {(Xℓ, Yℓ)}ℓ∈[t−1] up to that round. Since Ht summarizes
past actions of the algorithm, we call it a history. The label of example Xt
is Yt = f(Xt,θ∗) + εt, where εt is an independent zero-mean noise vector
in round t. Our objective is to minimize the maximum uncertainty over
all test examples, maxk∈[K] tr(cov[Y∗,k | x∗,k,HT+1]).

8.2 Related Work
We study the problem of choosing human demonstrations adaptively to
get the desired output from the LLM as quickly as statistically possible.
We use active learning to choose them and then ask a human to label them.
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Finally, the human demonstrations are fed as in-context input to the LLM
together with the main user query, to obtain the desired output. Thus the
name is active transductive inference. Prior works on prompt-tuning and
transductive inference (Lester et al., 2021; Dong et al., 2022; Zhang et al.,
2022a; Min et al., 2022; Wu et al., 2022; Yu et al., 2022; Suzgun et al., 2022;
Liu et al., 2023a; Yu et al., 2023; Liu et al., 2023d) focus on hard prompt-
tuning where the user must carefully handcraft the prompt to get the
desired output for tasks like movie recommendation, disambiguation QA,
navigation, etc. Such examples of carefully handcrafting hard prompts
with demonstrations can be found in Suzgun et al. (2022); Srivastava et al.
(2022). These papers also show how failing to design such prompts with
demonstrations can lead the LLM to predict wrong outputs. Note that we
adaptively design the prompt through carefully chosen demonstrations. In
our experiments, we show significant improvement over randomly chosen
demonstrations.

The problem of active learning is also related to dataset augmentation
(Dukler et al., 2021). In this work, the most informative unlabeled exam-
ples are chosen by optimizing the error of the model on the validation
set. The gradient of the validation set error with respect to the weights
of unlabeled examples has a closed form when the original model is lin-
earized. The main difference in active learning, including in our work,
is that labeling all unlabeled examples would be costly. Therefore, the
labels are not available in advance and are queried adaptively. We also
learn in context and do not assume that the gradient information of the
LLM is available. Prompt composition has also been an active area of
research. Bowman et al. (2023) proposed a-la-carte prompt tuning, where
prompts are tuned on individual datasets and composed at inference time
to mimic the performance of the model that would have been trained on
the union of the corresponding datasets. This idea has been further ex-
tended by Perera et al. (2023), where prompts for previously unseen tasks
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are obtained by linearly combining prompts from known tasks. To do this,
they use spectral decomposition and project prompts from known tasks
to a lower dimensional space. In our work, we do not tune prompts or
compose simpler models. We actively probe an LLM, treated as a black box
without any extra side information, to answer a test example as accurately
as possible, with as little variance in the answer as possible.

Recently there has been a lot of progress in prompt tuning (or aligning).
Hassan et al. (2023) studies prompt aligning for a single test sample to
adapt to multi-modal test prompts at test time by minimizing the feature
distribution shift to the test domain. In contrast in this paper, we study
adapting prompts for many test samples without the feature distribution
shift assumption. The Wang et al. (2023a) trains a smaller LLMto select
demonstrations for a larger LLM. However, we rely on active learning
to select the smallest number of informative prompts to be labeled by
human labelers. This avoids finetuning a smaller LLM for individual
tasks. Wang et al. (2023d) studies transductive inference for diffusion
models for a different setting where given a pair of task-specific example
images, such as depth from/to image and scribble from/to image, and text
guidance, the model automatically understands the underlying task and
performs the same task on a new query image following the text guidance.
However, in our setting, we do not explicitly encode any guidance text.
The Wen et al. (2023) proposes to mix the nearest neighbor method with
gradient optimization to select prompts during test time. Similarly, Zhang
et al. (2023) proposes a nearest neighbor approach to select in-context
examples for computer vision tasks. We compare our approach against
such nearest-neighbor selection algorithms. Finally, Bai et al. (2023); Wang
et al. (2023b) analyze transductive inference theoretically to understand
its universality, generalization capability, and limitations. In contrast, we
only do a theoretical analysis of AIPD to show it maximally reduces the
estimated variance of the answer to the user’s query. The Zhang et al.
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(2022b) study the chain-of-thought prompting where they automatically
select the prompt using a clustering-based approach.

There are some related works in the area of medical diagnosis chatbot
examples that we shared in the introduction. One notable study Caruccio
et al. (2024), although not utilizing machine learning techniques, provides
valuable insights with its implementation of three hardcoded prompt
designs for accurate diagnosis. These designs, however, do not engage in
active learning, as they lack the capability to adapt based on user input.
Similarly, Kuroiwa et al. (2023) gives more insights into self-diagnostics
of orthopedic diseases using ChatGPT. In contrast, web applications such
as Buoy Health BuoyHealth and Live Healthily livehealthily employ a
more dynamic approach, actively tailoring subsequent questions based
on users’ responses. This aligns with active learning principles but it is
not clear what techniques they apply and is notably underexplored in
academic literature, indicating a potential area for further research. Our
setting also goes beyond the single shot active prompt tuning studied in
Margatina et al. (2023). Note that this work studies prompt tuning only
for one iteration, and does not take into account the historical context. So
it has limited ability for complex tasks like ARC (Alford, 2021) and PCFG
(Hupkes et al., 2020) as well as handling vector labels like GO and SAL.

Active Learning (AL): Recently, there has been a lot of focus on using
deep AL to finetune LLMs. All AL algorithms tend to balance uncertainty
and diversity in the selection of unlabeled examples. We briefly discuss
them below and also highlight the main difference of these approaches
with prompt aligning with GO and SAL.

(1) Coreset: This is a pure diversity-based approach using a coreset
selection. In every iteration, first, the embedding of each unlabeled exam-
ple is computed from the network’s penultimate layer, and then unlabeled
examples are selected using a greedy furthest-first traversal conditioned
on all labeled examples (Sener and Savarese, 2017; Geifman and El-Yaniv,
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2017; Citovsky et al., 2021). Observe that in our setting we do not have
access to the penultimate layer of the LLM.

(2) Least: This is an uncertainty-based active learning algorithm. Here,
the uncertainty score of an unlabeled example is its predicted class proba-
bility. At every iteration, this algorithm then samples unlabeled examples
with the smallest uncertainty scores (Settles, 2009, 2011; Wang and Shang,
2014).

(3) Margin: This is also an uncertainty-based active learning algorithm
(Tong and Koller, 2001; Balcan et al., 2009; Settles, 2009). At every iteration
t it selects unlabeled examples that are sorted according to their multiclass
margin score and then selects unlabeled examples that are the hardest
to discriminate and can be thought of as examples closest to their class
margin. However, in our setting, we do not have any information on the
hypothesis space of the LLM and hence cannot implement such a baseline.

(4) Entropy: This is also an uncertainty-based active learning algorithm
Wang and Shang (2014); Kremer et al. (2014); Diao et al. (2023). At
every iteration t it selects unlabeled examples according to the entropy
of the example’s predictive class probability distribution. We show that
Greedy-NN-max-mean is outperformed significantly by GO and SAL in
the prediction, pcfg, or arc tasks.

(5) Badge: This is an algorithm that combines both uncertainty and
diversity sampling (Ash et al., 2019, 2021). For each unlabeled example x
its gradient embedding gx is computed with respect to the parameters of
the model’s penultimate layer. Finally, Badge chooses a batch of samples
to sample by applying k-Means++ (Arthur and Vassilvitskii, 2006) on
the gradient embeddings. Again recall that we cannot implement such a
baseline as we do not have access to the LLMs last layer.

(6) Badge-KM: This algorithm is similar to Badge but in the final step
instead of k-Means++ it uses k-Means on the gradient embeddings. In
Yuan et al. (2020) it is observed that applying k-Means on the embeddings
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results in an increase in accuracy over baselines in some datasets. Further
Yuan et al. (2020) observed from the t-SNE plots that k-Means select
centers that are further apart compared to the ones chosen by k-Means++
which leads to more diverse sampling in batches.

(7) Bald: Bayesian Active Learning by Disagreements (Kirsch et al.,
2019; Gal et al., 2017) chooses unlabeled examples that are expected to
maximize the information gained from the model parameters θt, i.e. the
mutual information between predictions and model posterior.

A more comprehensive survey on how AL is used for finetuning deep
models can be found in Ren et al. (2021); Zhan et al. (2022). The Bhatt et al.
(2024) study how experimental design can be used to select prompts for
finetuning a pre-trained LLM. Some recent works have also focused on se-
lecting unlabeled examples only within a task Wei et al. (2021); Chen et al.
(2023); Fifty et al. (2021). However, these works are geared towards select-
ing prompts within a task for finetuning, whereas we focus on adaptive
prompt design using experimental design. The work of Perlitz et al. (2023)
also uses AL for finetuning prompts for LLMsto improve label efficiency.
The Kung et al. (2023) proposes an AL framework for instruction tuning.
However, their approach again focuses on selecting unlabeled examples
inside each task and discriminating one task from another. However, they
make the simplifying assumption that all unlabeled examples inside the
tasks are equally informative which may inhibit the quality of the selected
subset.

8.3 Algorithms
In this section, we introduce our active learning algorithms for selecting
most informative training examples from Xexamples. To simplify notation,
we assume scalar labels and then discuss an extension to vector labels at
the end of the section. We also let Lt ⊆ [n] and Ut ⊆ [n] be the indices of
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Algorithm 10 G-optimal design (GO)
1: Input: Training set Xexamples = {xi}ni=1, test set X∗ = {x∗,k}

K
k=1, budget T

2: L1 ← ∅, U1 ← [n], H1 ← {}

3: for t = 1, . . . , T do
4: It = argmini∈Ut

maxk∈[K] x∗,kT
(
Σ̂−1
t + xixiT

)−1
x∗,k

5: Xt ← xIt ∈ Xexamples
6: Observe label Yt of example Xt
7: Lt+1 ← Lt ∪ {It}, Ut+1 ← Ut \ {It}

8: Ht+1 ← Ht ∪ {(Xt, Yt)}
9: Output: Sample Y∗,k ∼ p(· | x∗,k,HT+1) for k ∈ [K]

all labeled and unlabeled training examples up to round t, respectively.
Note that Lt ∪ Ut = [n].

Optimal Design Algorithm

The key idea is to label examples in Xexamples that minimize the maximum
uncertainty of predictions over all test examples x∗,k. Our computation
of uncertainty is borrowed from linear models. Specifically, take a linear
model Y = xTθ∗ + ε, where θ∗ ∈ Rd is its parameter and ε ∼ N(0,σ2)

is independent noise. Suppose that θ∗ ∼ N(θ0,Σ0). Then a well-known
result in Bayesian statistics (Bishop, 2006b) is that the posterior variance
of the model estimate at an example x∗,k given labeled examples Ht is
x∗,kTΣ̂tx∗,k, where Σ̂t = (Σ−1

0 +σ−2 ∑t−1
ℓ=1 XℓXℓT)−1 is the posterior covari-

ance of θ∗ | Ht. Therefore, the maximum uncertainty over test examples
is maxk∈[K] x∗,kTΣ̂tx∗,k. The key observation is that this quantity does not
depend on labels. Therefore, it can be optimized greedily by choosing the
training example that minimizes it the most,

It = argmin
i∈Ut

max
k∈[K]

x∗,kT
(
Σ̂−1
t + xixiT

)−1
x∗,k , (8.1)
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where Ut are indices of all unlabeled training examples up to round t.
After the index It is chosen, the example xIt and its label Yt are added to
the history to get Ht+1 for the next iteration t+ 1.

This algorithm is a greedy solution to the G-optimal design (Pukelsheim,
2006; Katz-Samuels et al., 2021). We call it G-Optimal design and abbre-
viate it as GO. The pseudocode of GO is in algorithm 10. Note that GO
does not depend on observed Yt. Similar optimal designs have been effec-
tively applied in active learning (Chaudhuri et al., 2015; Mukherjee et al.,
2022b), bandits (Fontaine et al., 2021; Mason et al., 2021), and reinforce-
ment learning (Wagenmaker et al., 2022a). However, this is the first paper
that studies optimal design for adaptively designing prompts (Zhang et al.,
2022a; Diao et al., 2023). (8.1) can be viewed as choosing that training
example xi ∈ Ut that minimizes the maximum eigenvalue of the posterior
covariance Σ̂t. Therefore this leads to reducing the uncertainty over the
model parameter θ∗ as the confidence ellipsoid around θ⋆ shrinks (Latti-
more and Szepesvári, 2020a). Note that maximum eigenvalue reduction
also ensures diversity as it leads to choosing training examples along all
directions in Rd.

The time complexity of GO isO(Kd2nT). This is because, for T rounds,
the algorithm searches for the best training example out of at most n
and evaluates it on all test examples x∗,k ∈ X∗. The evaluation of each
test example in round t, x∗,kT(Σ̂−1

t + xixiT)−1x∗,k, takes O(d2) time, be-
cause (Σ̂−1

t + xixiT)−1 can be computed in O(d2) time using the Sherman-
Morrison formula. In the last step, the LLM is queried K times to return
{Y∗,k}

K
k=1.

Simulation-Based Algorithm

While GO reduces uncertainty in label predictions, it has a major limita-
tion. The chosen example Xt at round t is not affected by observed labels
(Yℓ)ℓ∈[t−1]. This is because (8.1) does not depend on (Yℓ)ℓ∈[t−1]. While this
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Algorithm 11 Simulation-based active learning (SAL)
1: Input: Training set Xexamples = {xi}ni=1, test set X∗ = {x∗,k}

K
k=1, budget T

2: L1 ← ∅, U1 ← [n], H1 ← {}

3: for t = 1, . . . , T do
4: for all i ∈ Ut do
5: for all x∗,k ∈ X∗ do
6: for j = 1, 2, . . . ,m do
7: Sample Y(j)

t,i ∼ p(· | xi,Ht)
8: Ht,i,j ← Ht ∪ {(xi, Y(j)

t,i )}

9: Sample Ỹ(j,1)
t,i,k, Ỹ(j,2)

t,i,k ∼ p(· | x∗,k,Ht,i,j)

10: It ← argmin
i∈Ut

max
k∈[K]

1
m

m∑
j=1

(
Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k

)2

11: Xt ← xIt ∈ Xexamples
12: Observe label Yt of example Xt
13: Lt+1 ← Lt ∪ {It}, Ut+1 ← Ut \ {It}

14: Ht+1 ← Ht ∪ {(Xt, Yt)}
15: Output: Sample Y∗,k ∼ p(· | x∗,k,HT+1) for k ∈ [K]

is a property of linear models, it is undesirable in non-linear models, such
as LLMs. To address this limitation, we propose a new algorithm that
simulates the impact of labeling examples on the uncertainty of predicted
labels. We call it Simulation-Based Active Learning and abbreviated it as
SAL. The pseudocode of SAL is provided in algorithm 11.

The key idea in SAL is to replace the closed-form formula in (8.1) by
a simulation. We detail the algorithm next. Fix round t, history Ht, and
candidate example xi. To estimate the impact of labeling xi, we simulate
its labels m times. For each simulation j ∈ [m], we sample Y(j)

t,i from
the conditional distribution p(· | xi,Ht) using the LLM. Then we extend
the history Ht by xi and its simulated label Y(j)

t,i , Ht,i,j = Ht ∪ {(xi, Y(j)
t,i )}.

This process results in m copies of augmented histories, each reflecting
a potential outcome of labeling of xi. Finally, we take two independent
samples for each j ∈ [m] as Ỹ(j,1)

t,i,k, Ỹ(j,2)
t,i,k ∼ p(· | x∗,k,Ht,i,j). The maximum
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uncertainty over test examples after labeling xi is estimated as

max
k∈[K]

1
m

m∑
j=1

(
Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k

)2
. (8.2)

The training example with the lowest value is chosen and we denote its
index by It. Then xIt and its observed label Yt are added to the history to
get Ht+1 for the next iteration t+ 1.

Next we justify SAL. Consider the same setting as in section 8.3. Given
a label Y(j)

t,i for example xi, the posterior distribution of θ∗ | Ht,i,j is
N(θ̂t,i,j, Σ̂t,i), where Σ̂t,i = (Σ̂−1

t + σ−2xixiT)−1 is the simulated poste-
rior covariance of θ∗ and

θ̂t,i,j = Σ̂t,i

(
Σ̂−1

0 θ0 + σ
−2

(
t−1∑
ℓ=1

XℓYℓ + xiY(j)
t,i

))

is the posterior mean. By design, Ỹ(j,1)
t,i,k and Ỹ(j,2)

t,i,k are independent samples
from N(x∗,kTθ∗,σ2), where θ∗ ∼ N(θ̂t,i,j, Σ̂t,i). Therefore, Ỹ(j,1)

t,i,k − Ỹ
(j,2)
t,i,k ∼

N(0, 2(x∗,kTΣ̂t,ix∗,k+σ
2)). By definition, (Ỹ(j,1)

t,i,k− Ỹ
(j,2)
t,i,k)

2 is a single sample
estimate of 2(x∗,kTΣ̂t,ix∗,k+σ

2) and the sum in (8.2) estimates this quantity
from m samples. Note that this estimate is proportional to x∗,kTΣ̂t,ix∗,k

that appears in the G-optimal design objective in (8.1). Therefore, in linear
models, SAL can be viewed as an inefficient implementation of GO. This
inefficiency stems from the need to simulate the LLM.

The time complexity of SAL is O(nKmT). This is because it searches
for the best example out of at most n in T rounds for each test example
k ∈ [K]. The evaluation of impact on each test example requires 2m LLM
queries.

Vector labels: GO and SAL are easy to extend to vector labels, dy > 1.
GO does not depend on labels at all. The only modification in SAL is that
(8.2) is replaced with maxk∈[K]

1
m

∑m
j=1 ∥Ỹ

(j,1)
t,i,k − Ỹ

(j,2)
t,i,k)∥2

2. This is the sum
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of the posterior variances of the labels over all dimensions.

8.4 Analysis
In this section, we analyze GO and SAL. The analysis is under the as-
sumption that the labels are scalar and hence, our objective simplifies to
minimizing maxk∈[K] var[Y∗,k | x∗,k,HT+1]. The analysis is organized as
follows. First, we prove that our objective is decreasing in history but not
supermodular, which precludes a straightforward analysis. This prop-
erty of our objective function is proved in Section G.1 and Section G.1.
Second, we analyze GO using the closed form of the posterior covari-
ance Σ̂t. Finally, we prove the equivalence of GO and SAL, and thereby
provide guarantees for SAL. All analyses are under the assumption of a
linear model with Gaussian noise. These proofs are in Section G.1 and
Section G.1.

Analysis of GO

To address challenge posed due to f not being a supermodular (theo-
rem G.3), we leverage the properties of the rank-1 updates in GO. The
proof is under the assumption that at round t, the training examples can be
partitioned as X = Sk ∪ Sk. The set Sk represents examples that are close
to x∗,k. The set Sk is convex such that for a αk ⩾ 0 we have xTy ⩾ αk for all
x, y ∈ Sk. In essence, αk governs the minimum level of similarity required
for examples within SK to be considered similar to the test example x∗,k.
This is achieved by setting a lower bound on the inner product between
any two examples in the set. The set Sk represents examples that are not
close to x∗,k. It is defined βk ⩾ 0 such that xTy ⩽ βk for all x ∈ Sk and
y ∈ Sk. In contrast to αk, βk limits the maximum similarity any example
in Sk can have with examples outside this set. Define αmin = mink αk, and
βmax = βmax. Define the set S = ∩Kk=1Sk as the set of all examples that are
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close to all {x∗,k}
K
k=1 and S = ∪Kk=1Sk as the set of all examples that are not

close to all {x∗,k}
K
k=1. Assume S ̸= {∅} and |S| > T . With this in hand, we

prove the following claim.

Theorem 8.1. Let αmin,βmax ⩾ 0 be set such that βmax ⩾ 1 − α2
min and T ⩽

α2
min

(βmax+
√

2)βmaxd
. Then for any x∗,k we can show that x∗,kTΣ̂T+1x∗,k ⩽ 1

α2
maxT+1 +

(1 − α2
max) .

The proof is in section G.1. It is a major departure from similar proofs
in active learning with a fixed budget (Tong and Koller, 2001; Hanneke
et al., 2014; Azizi et al., 2022; Yang and Tan, 2022) in three aspects. First, we
analyze the discrete allocation problem in (G.1) instead of its continuous
optimal-design relaxation (Pukelsheim, 2006). Second, any unlabeled
example in X is labeled at most once. Finally, (G.1) is asymmetric in the
sense that we optimize the uncertainty of a single example x∗ over a larger
set. To make the analysis manageable, we impose structure onX. The claim
in theorem 8.1 holds for any T if βmax = 1/(4dn) and αmin =

√
1 − βmax.

In this case, αmin is close to 1, and we get a near-optimal O(1/T) decrease
in posterior variance.

Analysis of SAL

For a sufficiently large sample sizem in SAL, we can establish the following
equivalence of SAL and GO.

Theorem 8.2. Fix a failure probability δ ∈ (0, 1). Defineσ2
t,i,k=E[ 1

m

∑m
j=1(Ỹ

(j,1)
t,i,k−

Ỹ
(j,2)
t,i,k)

2] = 2x∗,kTΣ̂t,ix∗,k + σ
2, and define σ2

t,i,max = maxk∈[K] σ
2
t,i,k. Then for
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any t ∈ [T ] and i ∈ Ut, we have that

σ2
t,i,max

[
1 − 2

√
log(1/δ)
m

]
⩽ max
k∈[K]

1
m

m∑
j=1

(
Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k

)2

⩽ σ2
t,i,max

[
1 + 2

√
log(1/δ)
m

+
2 log(1/δ)

m

]
.

Moreover, form ⩾ 8 log(1/δ) we have that

2 max
k

x∗,kTΣ̂t,ix∗,k +
σ2

2 ⩽ max
k

1
m

m∑
j=1

(
Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k

)2

⩽ 5 max
k

x∗,kTΣ̂t,ix∗,k +
5σ2

2 .

These claims hold with probability at least 1 − δ.

The claim is proved in section G.1. The key idea in the proof is that (8.2)
multiplied bym/[2(x∗,kTΣ̂t,ix∗,k + σ

2)] is a chi-squared random variable
with m degrees of freedom. Then we use concentration inequalities of
Laurent and Massart (2000) to get a high-probability confidence interval
on distance to the mean m, which in turn allows us to relate the actual
variance to its empirical estimate. theorem 8.2 shows that SAL is equivalent
to GO for a sufficiently large sample size m. theorem 8.1 can be then
adapted to SAL as follows. The only change is in condition on T , which

changes to T ⩽ α2
/(

β+
√

2O
(

1−
√

1/m

1+
√

1/m

))
βd+O(

√
1/m) . Therefore,

SAL attains a near-optimal O(1/T) decrease in posterior variance as m→∞.
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8.5 Experiments
We evaluate GO and SAL on a variety of prediction tasks. These tasks cover
both classification and regression, including natural language features,
and help us to evaluate the capabilities of GO and SAL to choose few-
shot examples for active in-context prompt design. We also demonstrate
that GO and SAL can be used for general pattern recognition. Detailed
descriptions of all datasets are in Section G.2. We describe the prompts in
detail in Section G.3.

Experimental Setup

We use Mistral-7B (Jiang et al., 2023), Vicuna-13B (Chiang et al., 2023),
and Falcon-40B (Penedo et al., 2023) as the LLMs and design prompts
following Dinh et al. (2022) and Suzgun et al. (2022). To investigate the
impact of LLM model size on performance, we experiment with these
three models of varying sizes: 7B, 13B, and 40B. Interestingly, we observe
that the smaller models (Mistral-7B and Vicuna-13B) perform very poorly
on certain tasks. Examples of the prompts are given in Section G.3. Each
experiment is averaged over 10 trials. At the beginning of each trial, we
randomly select K = 20 test examples. We describe in detail how the
training set and n are chosen for each dataset in Section G.2.

Each run is a simulation that proceeds as follows. In round t, each
method selects a training example to label Xt and then observes the true
label Yt. All past interactions Ht = {(Xℓ, Yℓ)}ℓ∈[t−1] along with the test
examples x∗,k are used to craft a prompt for the LLM. The performance
at round t is evaluated by the error L(t) = 1

K

∑K
k=1 L(Y∗,k, Ỹ∗,k,t), where

Y∗,k is the true label of test example x∗,k, Ỹ∗,k,t is its LLM predicted label
in round t, and L(y∗,y) is a task-specific error function. For classification
tasks, we choose L(y∗,y) = I{y∗ = y} and call L(t) a misclassification error.
For regression tasks, we choose L(y∗,y) = (y∗−y)

2 and call L(t) the MSE.
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For pattern recognition tasks, where Y∗,k and Ỹ∗,k,t are either vectors or
matrices, we choose let L(y∗,y) = I{y∗ = y} and L(t) represents 0-1 error.

We posit that GO and SAL perform well because they both reduce the
uncertainty of test examples based on the right notion of similarity. To
show this, we compare to baselines that reduce uncertainty uniformly (like
Uniform), or reduce uncertainty informatively (Least or Max-Entropy), or
only select examples with similar features to test examples (Greedy-NN).
As shown in our extensive experiments, these baselines fail to match the
capabilities of GO and SAL to select informative examples in the majority
of the tasks. The following methods are compared in our experiments:
(1) Uniform: The example Xt in round t is sampled uniformly at random
from the unlabeled set Ut. Uniform is a pure exploration algorithm that
does not take into account the similarity to test examples and variance
reduction. We chose it as a baseline because it tends to work well in
practice. Therefore, it is used frequently in active learning and prompt
tuning papers (Zhang et al., 2022b; Diao et al., 2023).
(2) Greedy-NN: The exampleXt in round t is chosen to align the most with
all test examples x∗,k such that It ← argmaxi∈Ut

maxk∈[K] x∗,kTxi. This
baseline shows that our information gathering rule in (8.1) goes beyond
pure feature similarity. This baseline is similar to the automatic exemplar
construction method by clustering by Zhang et al. (2022b).
(3) Least: This is similar to the disagreement-based method of Diao et al.
(2023). The disagreement score of the example i ∈ Ut is calculated as
si =

∑K
k=1 Ytik where Ytik ∼ p (· | x∗,k, xi) is the number of unique answers

by for test example x∗,k using only xi as the in-context example by the
LLM. Then the example selected at round t is It ← argmaxi∈Ut

si. This
is the unlabeled example where the LLM, disagrees the most for all test
examples and is least confident. We compare against this baseline to show
that our information gathering rule in (8.1) goes beyond just uncertainty
sampling but also takes into account the diversity of training examples
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when choosing to label the next example.
(4) Max-Entropy: This is the uncertainty-based maximum entropy method
of Zhang et al. (2022a); Diao et al. (2023). At round t the example with
the highest entropy is selected as It ← argmaxi∈Ut

−
∑K
k=1 Ȳtik ln Ȳtik

where Ȳtik ∼ p (· | x∗,k, xi) is the frequency of a predicted answer among
all predictions for the test example x∗,k using xi as the in-context example
by the LLM. A larger entropy denotes greater uncertainty and therefore,
an unlabeled example with the largest entropy will be selected. Again we
compare against this uncertainty-based baseline to show that our infor-
mation gathering rule in (8.1) goes beyond just uncertainty sampling but
also considers the diversity of training examples when choosing to label
the next example.
(5) GO (ours): This is algorithm 10 where X are the original feature
vectors.
(6) GO-Inst (ours): This is algorithm 10 where the original feature vectors
are used in the prompt but X are their 768-dimensional Instructor em-
beddings (Su et al., 2022). We use this for natural language classification
tasks.

(7) SAL (ours): This is algorithm 11 where X are the original fea-
ture vectors. To implement SAL efficiently, we combine it with GO as
a preprocessing step. Specifically, in round t, GO first chooses 5 most
informative examples from Ut and then we apply SAL. We usem = 1 in
all experiments. We use these approximations because SAL is computa-
tionally expensive (section 8.3). Similarly to GO-Inst, we use Instructor
embeddings for natural language classification tasks.

All used datasets and experimental setups are described in Section G.2.
This section only summarizes the main results.

Standard classification and regression tasks. We use 4 classification
and 2 regression datasets from UCI and OpenML (Section G.2). We set
T = 5 to simulate the realistic scenario when the test queries provided
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Datasets Uniform Greedy-NN Least Max-Entropy GO (ours) SAL (ours)
iris 0.41± 0.11 0.60± 0.13 0.64± 0.15 0.72± 0.17 0.38± 0.14 0.34± 0.14

M banknote 0.75± 0.10 0.58± 0.04 0.59± 0.02 0.73± 0.16 0.77 ± 0.07 0.75± 0.15
balance-scale 0.61± 0.13 0.69± 0.22 0.55± 0.25 0.57 ± 0.14 0.48± 0.09 0.72± 0.04
thyroid-new 0.44± 0.12 0.70± 0.08 0.74± 0.12 0.57 ± 0.08 0.55± 0.06 0.63± 0.14

iris 0.22± 0.24 0.60± 0.37 0.60± 0.49 0.40± 0.20 0.20± 0.24 0.20± 0.24
V banknote 0.40± 0.37 0.80± 0.24 0.50± 0.32 0.50± 0.32 0.50± 0.32 0.10± 0.20

balance-scale 0.60± 0.20 0.60± 0.37 0.50± 0.32 0.80± 0.24 0.30± 0.24 0.50± 0.00
thyroid-new 0.52± 0.45 1.00± 0.00 0.70± 0.24 0.50± 0.00 0.60± 0.20 0.50± 0.32

iris 0.20± 0.06 0.62± 0.14 0.70± 0.20 0.65± 0.18 0.42± 0.10 0.33± 0.23
F banknote 0.45± 0.23 0.53± 0.25 0.60± 0.12 0.42± 0.17 0.45± 0.06 0.45± 0.1

balance-scale 0.70± 0.28 0.68± 0.13 0.85± 0.12 0.62± 0.08 0.47 ± 0.24 0.45± 0.13
thyroid-new 0.55± 0.29 0.57 ± 0.20 0.75± 0.19 0.65± 0.15 0.55± 0.23 0.53± 0.12

Table 8.1: Misclassification error in classification datasets using Mistral-7B
(M), Vicuna-13B (V), and Falcon-40B (F) on K = 20 test examples at the
end of budget T = 5.

Datasets Uniform Greedy-NN Least Max-Entropy GO (ours) SAL (ours)
machine(e+04) 11.4± 3.34 10.5± 2.44 14.3± 3.39 11.0± 1.93 10.5± 3.74 10.6± 3.84

M fifa(e-04) 1.40± .216 3.72± 1.12 1.18± .53 4.15± 1.11 .999± .404 .68± .26
machine(e+04) 5.59± 1.35 5.04± .851 7.95± 1.69 4.98± 1.06 5.66± 1.54 4.80± 1.46

V fifa(e+03) 5.90± 1.59 4.72± .931 5.11± 1.12 6.76± 1.69 1.44± .258 2.59± .742
machine(e+03) 1.16± 1.22 4.28± 2.30 2.15± 1.08 3.50± 2.45e+ 03 .32± .209 2.96± 1.56

F fifa(e+01) 7.78± 3.85 6.95± 2.93 12.4± 12.3 26.3± 37.6 7.90± 4.64 4.61± 4.35

Table 8.2: MSE in regression datasets using Mistral-7B (M), Vicuna-13B
(V), and Falcon-40B (F) on K = 20 test examples at the end of budget
T = 5.

Task Uniform Greedy-NN Least Max-Entropy GO (ours) SAL (ours)
Arc-1 0.45± 0.50 0.45± 0.50 0.90± 0.30 0.60± 0.49 0.30± 0.46 0.15± 0.36
Arc-2 0.80± 0.40 1.00± 0.00 0.80± 0.40 0.80± 0.40 0.80± 0.40 0.01± 0.01

PCFG-1 0.60± 0.49 1.00± 0.00 1.00± 0.00 1.00± 0.01 0.20± 0.40 0.02± 0.01
PCFG-2 0.20± 0.40 1.00± 0.00 0.20± 0.40 1.00± 0.00 0.20± 0.40 0.14± 0.40

Table 8.3: 0-1 error using Falcon-40B on K = 20 test examples at the end
of budget T = 5. ARC-1 is the expansion-contraction task, ARC-2 is the
rotation task, PCFG-1 is the add-subtract task, and PCFG-2 is the repeat
experiment task. Mistral-7B and Vicuna-13B perform very poorly on these
tasks and thus are omitted.

by the user need to be inferred quickly. For classification tasks, K = 20
test examples are chosen among the different classes of the dataset. We
describe in detail how the training set and n are chosen for each dataset
in Section G.2. For regression tasks, K = 20 random test examples are
chosen. Our results on classification tasks are reported in table 8.1 and
on regression tasks in table 8.2. We observe that GO and SAL are the
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Datasets Uniform Greedy-NN Least Max-Entropy GO (ours) SAL (ours)
movie 0.32± 0.17 0.90± 0.06 0.87 ± 0.09 0.55± 0.18 0.27 ± 0.10 0.49± 0.11

M entity 0.69± 0.19 0.86± 0.06 0.87 ± 0.09 0.59± 0.15 0.65± 0.18 0.39± 0.19
theme 0.74± 0.05 0.74± 0.09 0.82± 0.16 0.68± 0.09 0.80± 0.09 0.81± 0.08
movie 0.10± 0.20 0.70± 0.24 0.90± 0.20 0.30± 0.24 0.02± 0.01 0.10± 0.20

V entity 0.20± 0.24 0.90± 0.20 0.70± 0.24 0.60± 0.20 0.10± 0.20 0.10± 0.20
theme 0.90± 0.20 0.70± 0.40 1.00± 0.00 0.70± 0.24 0.60± 0.37 0.80± 0.40
movie 0.55± 0.06 0.62± 0.18 0.78± 0.17 0.53± 0.22 0.38± 0.18 0.47 ± 0.17

F entity 0.55± 0.23 0.62± 0.08 0.75± 0.14 0.65± 0.24 0.47 ± 0.23 0.42± 0.24
theme 0.68± 0.20 0.70± 0.13 0.85± 0.05 0.85± 0.09 0.53± 0.18 0.55± 0.19

Table 8.4: Misclassification error in natural language classification tasks
using Mistral-7B (M), Vicuna-13B (V), and Falcon-40B (F) on K = 20 test
examples at the end of budget T = 5.

best-performing methods in the majority of the datasets. Note that there
is no single baseline that consistently outperforms them.

General pattern recognition. We experiment with 4 tasks: ARC ex-
pansion and contraction, ARC rotation, PCFG Add-Subtract, and PCFG
Repeat. Both inputs and outputs in these tasks are vectors or matrices. We
describe examples of ARC and PCFG tasks in detail in Section G.2. Each
dataset comprises examples of two patterns: expansion and contraction,
clockwise and counter-clockwise rotation, add and subtract, repeat first
and second digits. In each trial, we choose K = 20 different test exam-
ples equally from two patterns and set T = 5. Our results are reported
in table 8.3. In all tasks, GO and SAL are the best-performing methods.
SAL outperforms GO in ARC (Alford, 2021; Mirchandani et al., 2023) and
PCFG (Hupkes et al., 2020) consistently.

Natural language classification tasks (NLC). We show that GO and
SAL work well on general NLP tasks where no explicit numerical features
are available. We create three synthetic datasets based on the following
tasks: (i) movie-names: predicting a genre from a movie name (e.g., ro-
mance, horror), (ii) movie-theme: predicting a common theme for a pair
of movie names (e.g., coming-of-age, sci-fi), and (iii) entity-names: pre-
dicting an entity’s type from its name (e.g., celebrity, mountain, river).
Each dataset comprises 5 classes. Further details regarding the additional
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datasets are provided in Section G.2. In each trial, K = 20 test examples
were randomly chosen across the five classes. The feature vectors in GO
and SAL are Instructor embeddings of the original text features. Our re-
sults are reported in table 8.4. We observe again that GO and SAL are the
best-performing methods in the majority of the datasets. There is no single
baseline that consistently outperforms them. This shows that the optimal
design-based approach of GO and SAL correctly balances uncertainty and
diversity-based sampling.

8.6 Conclusions
In this paper, we studied the framework of active in-context prompt de-
sign (AIPD) that uses optimal design to systematically choose the most
informative unlabeled examples to label for a set of test examples. These
informative labeled examples are then used to minimize the prediction
error of the LLM for all the test examples. To our knowledge, this is the
first paper that studies optimal design for adaptive prompt design. In-
spired by the linear model, we proposed an algorithm GO that strategically
chooses the most informative examples that minimize the variance of the
posterior covariance for any test example from the test set. We proposed
a second algorithm SAL that uses simulations to estimate the impact of
how unlabeled examples reduce LLMuncertainty for all test examples. It
then chooses to label examples that maximally reduce the uncertainty of
the LLM for all test examples from the test set. We theoretically analyze
GO and SAL and show their equivalence in linear models. We show that
both algorithms guarantee information gain at each iteration. Finally, we
show empirically that, when used with LLMs like Mistral-7B, Vicuna-13B,
and Falcon-40B, both GO and SAL result in better prediction accuracy
than other baselines (Zhang et al., 2022a,b; Diao et al., 2023) on tasks like
classification, regression, ARC, PCFG, and natural language generation.
Our research opens up exciting new directions for future work such as
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extending AIPD framework beyond text to enable informative example
selection for tasks involving images, videos, or other modalities using
multi-modal LLMs (Yin et al., 2023). Additionally, the integration of ac-
tive learning with diffusion models, a powerful class of generative models,
presents promising directions for future research (Ho et al., 2020).



194

Part V

Conclusion



195

9 conclusion

In this thesis, we studied how to adaptively collect data for policy evalua-
tion, multi-task learning, and learning preference models for LLM align-
ment. The main question we addressed in this thesis is:

How to adaptively collect diverse and informative data to balance
exploration-exploitation and minimize the metric of error?

To address this main question we divided the thesis into three parts
where each part has one central theme as follows: 1) Adaptive data collec-
tion for policy evaluation which leads to a better evaluation of a learning
agent before its deployment. In this part, the metric of error is the mean
squared error of the value of the target policy. We showed in the three
subsequent chapters how to use optimal design to minimize the mean
squared error of the value of the target policy compared to an oracle that
has access to the problem parameters. 2) Adaptive data collection for
Multi-task learning which helps the learning agent to minimize the metric
of error across the tasks by leveraging the shared structure across the tasks.
In this part, the metric of error considered is the prediction error of the
best arm for each task and the cumulative regret across the tasks. It also
leads the agent to generalize well to new unseen tasks given that this task
shares some similarities with the tasks during training time. This section
consists of two chapters where the first chapter shows how to adaptively
collect data that minimizes prediction error of the best arm for each task.
The last chapter in this part shows how to minimize the cumulative regret
using a Decision Transformer from data collected by a weak demonstrator.
3) Finally we show how to adaptively select informative examples to learn
preference models for aligning LLMs and adaptively designing prompts
for few-shot learning using LLMs. In this last part, the core theme is data
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collection for LLMs and consists of two more chapters. In the first chapter,
we show how to use optimal design to learn the preference model using
human feedback. In the next chapter, we show how to use optimal design
to collect and build informative prompts for few-shot learning in LLMs.
At the end of each of the chapters, we also talk about how to extend these
works for future directions.
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a appendix: revar: strengthening policy
evaluation via reduced variance sampling

A.1 Optimal Sampling in Bandit Setting
Proposition 1. (Restatement) In an A-action bandit setting, the estimated
return of π after n action-reward samples is denoted by Yn as defined in (2.1).
Note that the expectation of Yn after each action has been sampled once is given
by v(π). Minimal MSE, ED

[
(Yn − v(π))

2
]
, is obtained by taking actions in the

proportion:

b∗(a) =
π(a)σ(a)∑A

a ′=1 π(a
′)σ(a ′)

. (A.1)

where b∗(a) denotes the optimal sampling proportion.

Proof. Recall that we have a budget of n samples and we are allowed
to draw samples from their respective distributions. Suppose we have
Tn(1), Tn(2), . . . , Tn(A) samples from actions 1, 2, . . . ,A. Then we can cal-
culate the estimator

Yn =
1
n

n∑
t=1

Yt =

A∑
a=1

π(a)

Tn(a)

Tn(a)∑
i=1

Ri(a)

where, n =
∑A
a=1 Tn(a) samples and Ri(a) is the ith reward received after

taking action a. We collect a dataset D of n action-reward samples. Now
we use the MSE to estimate how close is Yn to v(π) as follows:

ED

[
(Yn − v(π))

2
]
= Var(Yn) + bias2(Yn).

Note that once we have sampled each action once, since ED[Yn] = v(π) so
bias(Yn) = 0. So we need to focus only on variance. We can decompose
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the variance as follows:

Var(Yn)
(a)
=

A∑
a=1

Var

 π(a)

Tn(a)

Tn(a)∑
i=1

Ri(a)


=

A∑
a=1

π2(a)

T 2
n(a)

Tn(a)∑
i=1

Var (Ri(a)) =
A∑
a=1

π2(a)σ2(a)

Tn(a)

where, (a) follows as Ri(a) and Ri ′(a ′) are independent for every (i, i ′)
and (a,a ′) pairs. Now we want to optimize Tn(1), Tn(2), . . . , Tn(A) so that
the variance Var(Yn) is minimized. We can do this as follows: Let’s first
write the variance in terms of the proportion b := {b(1),b(2), . . . ,b(A)}
such that

b(a) =
Tn(a)∑A
a ′=1 Tn(a

′)
.

We can then rewrite the optimization problem as follows:

min
b

A∑
a=1

π2(a)σ2(a)

b(a)
, s.t.

∑
a

b(a) = 1

∀a,b(a) > 0. (A.2)

Note that we use b(a) to denote the optimization variable and b∗(a) to
denote the optimal sampling proportion. Given this optimization in (A.2)
we can get a closed form solution by introducing the Lagrange multiplier
as follows:

L(b, λ) =
A∑
a=1

π2(a)σ2(a)

b(a)
+ λ

(
A∑
a=1

b(a) − 1
)

. (A.3)

Now to get the Karush-Kuhn-Tucker (KKT) condition we differentiate
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(A.3) with respect to b(a) and λ as follows:

∇b(a)L(b, λ) = −
π2(a)σ2(a)

b2(a)
+ λ (A.4)

∇λL(b, λ) =
∑
a

b(a) − 1. (A.5)

Now equating (A.4) and (A.5) to zero and solving for the solution we
obtain:

λ =
π2(a)σ2(a)

b2(a)
=⇒ b(a) =

√
π2(a)σ2(a)

λ∑
a

b(a) = 1 =⇒
A∑
a=1

√
π2(a)σ2(a)

λ
= 1 =⇒

√
λ =

A∑
a=1

√
π2(a)σ2(a).

This gives us the optimal sampling proportion

b∗(a) =
π(a)σ(a)∑A

a ′=1
√
π(a ′)2σ2(a ′)

=⇒ b∗(a) =
π(a)σ(a)∑A

a ′=1 π(a
′)σ(a ′)

.

Finally, observe that the above optimal sampling for the bandit setting for
an action a only depends on the standard deviation σ(a) of the action.

A.2 Optimal Sampling in Three State Stochastic
Tree MDP

Lemma 1. (Restatement) Let T be a 2-depth stochastic tree MDP as defined in
Theorem 2.1 (see Figure A.1 in Section A.2). Let Yn(s1

1) be the estimated return
of the starting state s1

1 after observing n state-action-reward samples. Note that
vπ(s1

1) is the expectation of Yn(s1
1) under Assumption 1. LetD be the observed data

over n state-action-reward samples. To minimise MSE, ED[(Yn(s
1
1) − v

π(s1
1))

2],
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Figure A.1: 2-Depth, A-action Tree MDP

is obtained by taking actions in each state in the following proportions:

b∗(a|s2
j) ∝ π(a|s2

j)σ(s
2
j ,a)

b∗(a|s1
1)∝

√√√√π2(a|s1
1)

[
σ2(s1

1,a)+γ2
∑
s2
j

P(s2
j |s

1
1,a)B2(s2

j)

]
,

where, B(s2
j) =

∑
a π(a|s

2
j)σ(s

2
j ,a).

Proof. We define an estimator Yn(s) that visits each state-action pair∑
s∈S

∑
a

Tn (s,a) = n

times and then plug-ins the estimated sample mean. For the ith state in
level ℓ of the tree, this estimator is given as:

Yn(s
ℓ
i)

=

A∑
a=1


π(a|sℓi)

Tn(sℓi,a)

Tn(s
ℓ
i ,a)∑

h=1
Rh(s

ℓ
i,a)︸ ︷︷ ︸

mean reward weighted by π(a|sℓi)

+γπ(a|sℓi)
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a) Yn(s

ℓ+1
j )︸ ︷︷ ︸

Next state estimate

 , if ℓ ̸= L

where we take Yn(sl+1
j ) = 0 if sli is a leaf state (i.e., l = L).
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Step 1 (Yn(s1
1) is an unbiased estimator of v(π)): We first show that

Yn(s
1
1) is an unbiased estimator of v(π). We use this fact to show that

minimizing variance is equivalent to minimizing MSE. The expectation of
Yn(s

1
1) is given as:

E[Yn(s1
1)]

= E

 A∑
a=1

(∑
s2
j

π(a|s1
1)

Tn(s1
1,a)

Tn(s
1
1,a)∑

h=1

Rh(s
1
1,a) + γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)Yn(s2

j)

)
(a)
=

A∑
a=1

(∑
s2
j

π(a|s1
1)

Tn(s1
1,a)

Tn(s
1
1,a)∑

h=1

E
[
Rh(s

1
1,a)

]
+ γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)E

[
Yn(s

2
j)
])

=

A∑
a=1

(∑
s2
j

π(a|s1
1)

Tn(s1
1,a)Tn(s

1
1,a)E

[
Rh(s

1
1,a)

]
+ γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)E

[
Yn(s

2
j)
])

= vπ(s1
1)

where, (a) follow from the linearity of expectation. Thus, Yn(s1
1) is a

unbiased estimator of v(π).
Step 2 (Variance of Yn(s1

1)): Next we look into the variance of Var(Yn(s1
1)).

Var(Yn(s1
1)) = Var

 A∑
a=1

(
π(a|s1

1)

Tn(s1
1,a)

Tn(s
1
1,a)∑

h=1

Rh(s
1
1,a) + γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)Yn(s2

j)

)
(a)
=

A∑
a=1

(
π2(a|s1

1)

T 2
n(s

1
1,a)

Tn(s
1
1,a)∑

h=1

Var[Rh(s1
1,a)] + γ2π2(a|s1

1)
∑
s2
j

P2(s2
j |s

1
1,a)Var[Yn(s2

j)]

)
(b)
=

A∑
a=1

(
π2(a|s1

1)σ
2(s1

1,a)
Tn(s1

1,a) + γ2π2(a|s1
1)
∑
s2
j

P2(s2
j |s

1
1,a)Var[(Yn(s2

j)]

)
,

(A.6)

where (a) follows because the reward in next state is conditionally inde-
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pendent given the current state and action and (b) follows from σ(s,a) =
Var[R(s,a)].

The goal is to reduce the variance Var(Yn(s1
1)) in (A.6). We first unroll

the (A.6) to take into account the conditional behavior probability of each
of the path from s1

1 to s2
j for j ∈ {1, 2, 3, 4}. This is shown as follows:

Var(Yn(s1
1))) =

∑
a

π2(a|s1
1)σ

2(s1
1,a)

Tn(s1
1,a)

+
∑
a

∑
s2
j

∑
a ′

γ2π2(a|s1
1)P

2(s2
j |s

1
1,a)π2(a|s2

j)σ
2(s2

j ,a)
Tn(s2

j ,a)

=⇒ nVar(Yn(s1
1))) =

∑
a

π2(a|s1
1)σ

2(s1
1,a)

Tn(s1
1,a)/n

+
∑
a

∑
s2
j

∑
a ′

γ2π2(a|s1
1)P

2(s2
j |s

1
1,a)π2(a|s2

j)σ
2(s2

j ,a ′)

Tn(s2
j ,a ′)/n

(a)
=⇒

∑
a

π2(a|s1
1)σ

2(s1
1,a)

b(a|s1
1)

+
∑
a

∑
s2
j

∑
a ′

γ2π2(a|s1
1)P

2(s2
j |s

1
1,a)π2(a|s2

j)σ
2(s2

j ,a ′)

P(s2
j |s

1
1,a)b(a|s1

1)b(a
′|s2
j)

where, (a) follows as

b(a ′|s2
i) =

Tn(s
2
i,a ′)∑

a Tn(s
2
i,a)

(a)
=

Tn(s
2
i,a ′)

P(s2
i|s

1
1,a)Tn(s1

1,a) =
Tn(s

2
i,a ′)/n

P(s2
i|s

1
1,a)Tn(s1

1,a)/n
=⇒ Tn(s

2
i,a ′)/n = P(s2

i|s
1
1,a)b(a|s1

1)b(a
′|s2
i)

where, in (a) the action a is used from state s1
1 to transition to state s2

i.
Similarly in (a) we can substitute Tn(s2

j ,a)/n for all s ∈ S. Note that this
follows because of the tree MDP structure as path to state sℓ+1

j depends
on it immediate parent state sℓi (see (3) in Theorem 2.1). Recall that



258

P(s ′|s,a)Tn(s ′|s,a) is the expected times we end up in next state, not the
actual number of times. We use P in this formulation instead of P̂ as this
is the oracle setting which has access to the transition model and our goal
is to minimize the number of samples n.

Step 3 (Minimal Variance Objective function): Note that we use
b(a|s) to denote the optimization variable andb∗(a|s) to denote the optimal
sampling proportion. Now, we determine the b values that give minimal
variance by minimizing the following objective:

min
b

∑
a

π2(a|s1
1)σ

2(s1
1,a)

b(a|s1
1)

+
∑
a

∑
s2
j

∑
a ′

γ2π2(a|s1
1)P(s

2
j |s

1
1,a)π2(a|s2

j)σ
2(s2

j ,a ′)

b(a|s1
1)b(a

′|s2
j)

s.t. ∀s,
∑
a

b(a|s) = 1

∀s,a b(a|s) > 0. (A.7)

We can get a closed form solution by introducing the Lagrange multi-
plier as follows:

L(λ, b) =
∑
a

π2(a|s1
1)σ

2(s1
1,a)

b(a|s1
1)

+
∑
a

∑
s2
j

∑
a ′

γ2π2(a|s1
1)P(s

2
j |s

1
1,a)π2(a|s2

j)σ
2(s2

j ,a ′)

b(a|s1
1)b(a

′|s2
j)

+
∑
s

λs

(∑
a

b(a|s) − 1
)

Step 5 (Solving for KKT condition): Now we want to get the KKT condi-
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tion for the Lagrangian function L(λ, b) as follows:

∇λsL(λ, b) =
∑
a

b(a|s) − 1 (A.8)

∇b(a|s1
1)
L(λ, b)

= −
π2(a|s1

1)σ
2(s1

1,a)
b(a|s1

1)
2 −γ2π2(a|s1

1)
∑
s2
j

∑
a ′

P(s2
j |s

1
1,a)π2(a ′|s2

j)σ
2(s2

j ,a ′)

b2(a|s1
1)b(a

′|s2
j)

+ λs1
1

(A.9)

∇b(a ′|s2
j)
L(λ, b)=−

∑
a ′

γ2π2(a|s1
1)
P(s2

j |s
1
1,a)π2(a ′|s2

j)σ
2(s2

j ,a ′)

b(a|s1
1)b

2(a ′|s2
j)

+ λs2
j

(A.10)

Setting (A.10) equal to 0, we obtain:

λs2
j
=
∑
a

γ2π2(a|s1
1)
P(s2

j |s
1
1,a)π2(a ′|s2

j)σ
2(s2

j ,a ′)

b(a|s1
1)b

2(a ′|s2
j)

(A.11)

=⇒ b(a|s2
j) =

√√√√∑
a

γ2π2(a|s1
1)
P(s2

j |s
1
1,a)π2(a ′|s2

j)σ
2(s2

j ,a ′)

b(a|s1
1)λs2

j

(A.12)

Finally, we eliminate λs2
j

by setting (A.8) to 0 and using the fact that∑
a b(a|s

2
j) = 1:

b∗(a|s2
j) =

π(a|s2
j)σ(s

2
j ,a)∑

a ′ π(a ′|s2
j)σ(s

2
j ,a ′)

(A.13)

which gives us the optimal proportion in level 2. Similarly, setting (A.9)
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equal to 0, we obtain:

λs1
1
=
π2(a|s1

1)σ
2(s1

1,a)
b2(a|s1

1)
+ γ2π2(a|s1

1)
∑
s2
j

∑
a ′

P(s2
j |s

1
1,a)π2(a ′|s2

j)σ
2(s2
j ,a ′)

b2(a|s1
1)b(a

′|s2
j)

=⇒ b(a|s1
1) =

√√√√√π2(a|s1
1)σ

2(s1
1,a)

λs1
1

+ γ2π2(a|s1
1)
∑
s2
j

∑
a ′

P(s2
j |s

1
1,a)π2(a ′|s2

j)σ
2(s2
j ,a ′)

λs1
1
b(a ′|s2

j)

b(a|s1
1) =

1√
λs1

1

√√√√√π2(a|s1
1)σ

2(s1
1,a) + γ2π2(a|s1

1)
∑
s2
j

∑
a ′

P(s2
j |s

1
1,a)π2(a ′|s2

j)σ
2(s2
j ,a ′)

b(a ′|s2
j)

=⇒ b(a|s1
1)

(a)
=

√√√√√π2(a|s1
1)σ

2(s1
1,a)

λs1
1

+ γ2π2(a|s1
1)
∑
s2
j

∑
a ′

P(s2
j |s

1
1,a)π2(a ′|s2

j)σ
2(s2
j ,a ′)

λs1
1
b(a ′|s2

j)

b∗(a|s1
1) =

1√
λs1

1

√√√√π2(a|s1
1)σ

2(s1
1,a) + γ2π2(a|s1

1)
∑
s2
j

∑
a ′

P(s2
j |s

1
1,a)B2(s2

j)

where, (a) follows by plugging in the definition of b(a ′|s2
j) and substitut-

ing B(s2
j) =

∑
a π(a|s

2
j)σ(s

2
j ,a). This concludes the proof for the optimal

sampling in the 2-depth stochastic tree MDP T.

A.3 Three State Deterministic Tree Sampling

Figure A.2: (Left) Deterministic 2-depth Tree. (Right) Stochastic 2-Depth
Tree with varying model.
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Consider the 2-depth, 2-action deterministic tree MDP T in Figure A.2
(left) where we have equal target probabilitiesπ(1|s1

1) = π(2|s1
1) = π(1|s2

1) =

π(2|s2
1) = π(1|s2

1) = π(2|s2
1) =

1
2 . The variance is given by σ2(s1

1, 1) = 400,
σ2(s1

1, 2) = 600, σ2(s2
1, 1) = 400, σ2(s2

1, 2) = 400, σ2(s2
2, 1) = 4, σ2(s2

2, 2) = 4.
So the left sub-tree has lesser variance than right sub-tree. Let discount
factor γ = 1. Then we get the optimal sampling behavior policy as follows:

b∗(1|s2
1) ∝ π(1|s2

1)σ(1|s2
1) =

1
2 · 20 = 10,b∗(2|s2

1) ∝ π(2|s2
1)σ(2|s2

1) =
1
2 · 20 = 10

b∗(1|s2
2) ∝ π(1|s2

2)σ(1|s2
2) =

1
2 · 2 = 1,b∗(2|s2

2) ∝ π(2|s2
2)σ(2|s2

2) =
1
2 · 2 = 1,

B(s2
1) = π(1|s2

1)σ(1|s2
1) + π(2|s2

1)σ(2|s2
1) = 20,

B(s2
2) = π(1|s2

2)σ(1|s2
2) + π(2|s2

2)σ(2|s2
2) = 2

b∗(1|s1
1) ∝

√√√√π2(1|s1
1)

[
σ2(s1

1, 1) + γ2
∑
s2
j

P(s2
j |s

1
1, 1)B2(s2

j)

]

=
√
π2(1|s1

1)σ
2(s1

1, 1) + γ2π2(1|s1
1)P(s

2
1|s

1
1, 1)B2(s2

1) + γ
2π2(2|s1

1)P(s
2
2|s

1
1, 1)B2(s2

2)

(a)
=

√
400 · 1

4 +
1
4 · 1 · 400 +

1
4 · 0 · 4 ≈ 14

b∗(2|s1
1) ∝

√√√√π2(2|s1
1)

[
σ2(s1

1, 2) + γ2
∑
s2
j

P(s2
j |s

1
1, 2)B2(s2

j)

]

=
√
π2(2|s1

1)σ
2(s1

1, 2) + γ2π2(2|s1
1)P(s

2
1|s

1
1, 2)B2(s2

1) + γ
2π2(2|s1

1)P(s
2
2|s

1
1, 2)B2(s2

2)

(b)
=

√
600 · 1

4 +
1
4 · 0 · 400 +

1
4 · 1 · 4 ≈ 12

where, (a) follows because P(s2
2|s

1
1, 1) = 0 and (b) follows P(s2

1|s
1
1, 2) = 0.
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Note that b(1|s1
1) and b(2|s1

1) are un-normalized values. After normaliza-
tion we can show that b(1|s1

1) > b(2|s1
1). Hence the right sub-tree with

higher variance will have higher proportion of pulls.

A.4 Three State Stochastic Tree Sampling with
Varying Model

In this tree MDP T in Figure A.2 (right) we haveP(s2
1|s

1
1, 1) = p, P(s2

1|s
1
1, 2) =

1 − p and P(s2
2|s

1
1, 1) = p, P(s2

2|s
1
1, 2) = 1 − p. Plugging this transition prob-

abilities from the result of Theorem 2.2 we get

b∗(a|s2
j) ∝ π(a|s2

j)σ(s
2
j ,a), for j ∈ {1, 2, 3, 4}

b∗(1|s1
1) ∝

√
π2(1|s1

1)

[
σ2(s1

1, 1) + γ2pB2(s2
1) + γ

2(1 − p)B2(s2
2)

]
,

b∗(2|s1
1) ∝

√
π2(2|s1

1)

[
σ2(s1

1, 2) + γ2pB2(s2
3) + γ

2(1 − p)B2(s2
4)

]

where, B(s2
j) =

∑
a π(a|s

2
j)σ(s

2
j ,a). Now if p≫ 1−p, then we only need to

consider the variance of state s2
1 when estimating the sampling proportion

for states s2
1 and s2

3 as

b∗(1|s1
1) ∝

√
π2(1|s1

1)

[
σ2(s1

1, 1) + γ2pB2(s2
1)

]
,

b∗(2|s1
1) ∝

√
π2(2|s1

1)

[
σ2(s1

1, 2) + γ2pB2(s2
3)

]
.

Remark A.1. (Transition Model Matters) Observe that the main goal of
the optimal sampling proportion in Theorem 2.2 is to reduce the variance of the
estimate of the return. However, the sampling proportion is not geared to estimate
the model P̂ well. An interesting extension to combine the optimization problem
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in Theorem 2.2 with some model estimation procedure as in Zanette et al. (2019);
Agarwal et al. (2019); Wagenmaker et al. (2021) to derive the optimal sampling
proportion.

A.5 Multi-level Stochastic Tree MDP
Formulation

Theorem 1. (Restatement) Assume the underlying MDP is an L-depth tree
MDP as defined in Theorem 2.1. Let the estimated return of the starting state s1

1
after n state-action-reward samples be defined as Yn(s1

1). Note that the vπ(s1
1) is

the expectation of Yn(s1
1) under Assumption 1. Let D be the observed data over n

state-action-reward samples. To minimize the MSE, ED[(Yn(s
1
1))−µ(Yn(s

1
1)))

2],
the optimal sampling proportions for any arbitrary state is given by:

b∗(a|sℓi)∝
√√√√π2(a|sℓi)

[
σ2(sℓi,a)+γ2

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)B2(sℓ+1

j )

]
,

where, B(s2
j) is the normalization factor defined as follows:

B(sℓi)=
∑
a

√√√√√√π2(a|sℓi)

σ2(sℓi,a)+γ2
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)B2(sℓ+1

j )


Proof. Step 1 (Base case for Level L and L− 1): The proof of this theorem
follows from induction. First consider the last level L containing the leaf
states. An arbitrary state in the last level is denoted by sLi . Then we have
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the estimate of the expected return from the state sLi as

Yn(s
1
1) =

A∑
a=1

π(a|s1
1)

(
1

Tn(s1
1,a)

Tn(s
1
1,a)∑

h=1

Rh(s
1
1,a) + γ

∑
sℓ+1
j

P(sℓ+1
j |s1

1,a)Yn(s2
j)

)

=

A∑
a=1

π(a|s1
1)

(̂
µ(s1

1,a)+γ
∑
sℓ+1
j

P(sℓ+1
j |s1

1,a)Yn(s2
j)

)

Observe that for the leaf-state the Yn(sLi ) the transition probability to next
statesP(sL+1

j |sLi ,a) = 0 for any actiona. SoYn(sLi ) =
∑A
a=1

(
π(a|sLi )µ̂(s

L
i ,a)

)
which matches the bandit setting. We define an estimator Yn(sℓi) as defined
in (2.2). Following the previous derivation in Theorem 2.2 we can show
its expectation is given as:

E[Yn(sLi )] =
∑
a

π(a|sLi )

Tn(sLi ,a)

Tn(s
L
i ,a)∑

h=1

E[Rh(sLi ,a)] =
∑
a

π(a|sLi )µ(s
L
i ,a) = vπ(sLi ).

Var[Yn(sLi )] =
∑
a

π2(a|sLi )

T 2
n(s

L
i ,a)

Tn(s
L
i ,a)∑

h=1

Var[Rh(sLi ,a)] =
∑
a

π2(a|sLi )σ
2(sLi ,a)

Tn(sLi ,a)

Now consider the second last level L − 1 containing the leaves. An
arbitrary state in the last level is denoted by sL−1

i . Then we have the
expected return from the state sL−1

i as follows:

Yn(s
L−1
i )

=
∑
a

π(a|sL−1
i )

 1
Tn(s

L−1
i ,a)

Tn(s
L−1
i ,a)∑
h=1

Rh(s
L−1
i ,a) + γ

∑
sLj

P(sLj |s
L−1
i ,a)Yn(sLj )


=

∑
a

π(a|sL−1
i )

µ̂(sL−1
i ,a) + γ

∑
sLj

P(sLj |s
L−1
i ,a)Yn(sLj )

 .
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Then for the estimator Yn(sL−1
i ) we can show that its expectation is given

as follows:

E[Yn(sL−1
i )] =

∑
a

π(a|sL−1
i )

[
1

Tn(s
L−1
i ,a)

Tn(s
L−1
i ,a)∑
h=1

E[Rh(sL−1
i ,a)]

+ γ
∑
sLj

P(sLj |s
L−1
i ,a)E[Yn(sLj )]

]

=
∑
a

π(a|sL−1
i )

[
µ(sL−1

i ,a) + γ
∑
sLj

P(sLj |s
L−1
i ,a)vπn(Y(sLj ))

]
= vπn(s

L−1
i ).

Var[Yn(sL−1
i )] =

∑
a

π2(a|sL−1
i )

[
1

T 2
n(s

L−1
i ,a)

Tn(s
L−1
i ,a)∑
h=1

Var[Rh(sL−1
i ,a)]

+ γ2
∑
sLj

P2(sLj |s
L−1
i ,a)Var[Yn(sLj )]

]
(a)
=

∑
a

π2(a|sL−1
i )

[
σ2(sL−1

i ,a)
Tn(s

L−1
i ,a)

+ γ2
∑
sLj

P2(sLj |s
L−1
i ,a)Var[Yn(sLj )]

]

where, (a) follows as
Tn(s

L−1
i ,a)∑
h=1

Var[Rh(sL−1
i ,a)] = Tn(s

L−1
i ,a)σ2(sL−1

i ,a).

Observe that in state sL−1
i we want to reduce the variance Var[Yn(sL−1

i )].
Also the optimal proportion b∗(a|sL−1

i ) to reduce variance at state sL−1
i

cannot differ from the optimal b∗(a|sLi ) of level L which reduces the vari-
ance of b∗(a|sLi ). Hence, we can follow the same optimization as done in
Theorem 2.2 and show that the optimal sampling proportion in state sL−1

i

is given by

b∗(a|sLj ) ∝ π(a|sLj )σ(sLj ,a)

b∗(a|sL−1
i )

(a)
∝

√√√√π2(a|sL−1
i )

[
σ2(sL−1

i ,a) + γ2
∑
sLj

P(sLj |s
L−1
i ,a)B2

sLj

]
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where, in (a) the sLj is the state that follows after taking actiona at state sL−1
i

and BsLj is defined in (2.4). This concludes the base case of the induction
proof. Now we will go to the induction step.

Step 2 (Induction step for Arbitrary Level ℓ): We will assume that all
the sampling proportion till level ℓ+ 1 from Lwhich is

b∗(a|sℓ+1
i ) ∝

√√√√π2(a|sℓi)

[
σ2(sℓi,a) + γ2

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)B2

sℓ+1
j

]

is true. For the arbitrary level ℓ + 1 we will use dynamic programming.
We build up from the leaves (states sLi ) up to estimate b∗(a|sℓ+1

i ). Then
we need to show that at the previous level ℓ we get a similar recursive
sampling proportion. We first define the estimate of the return from an
arbitrary state sℓi in level ℓ after n timesteps as follows:

Yn(s
ℓ
i) =

∑
a

π(a|sℓi)

 1
Tn(sℓi,a)

Tn(s
ℓ
i ,a)∑

h=1

Rh(s
ℓ
i,a) + γ

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)Yn(sℓ+1

j )


Then we have the expectation of Yn(sℓi) as follows:

E[Yn(sℓi)]
(a)
=

∑
a

π(a|sℓi)

µ(sℓi,a) + γ∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)vπn(Yn(sℓ+1

j ))


where, in (a) the vπn(Y(sℓ+1

j )) = E[Yn(sℓ+1
j )]. Then we can also calculate

the variance of Yn(sℓi) as follows:

Var[Yn(sℓi)] =
∑
a

π2(a|sℓi)

[
σ2(sℓi,a)
Tn(sℓi,a)

+ γ2
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)Var(Yn(sℓ+1

j ))

]
.

Again observe that the goal is to minimize the variance Var[Yn(sℓi)]. Then
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following the same steps in Theorem 2.2 we can have the optimization
problem to reduce the variance which results in the following optimal
sampling proportion:

b∗(a|sℓi) ∝

√√√√π2(a|sℓi)

[
σ2(sℓi,a) + γ2

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)B2(sℓ+1

j )

]

where in the last equation we use Bsℓ+1
j

which is defined in (2.4). Again we
can apply Theorem 2.2 because the optimal proportion b∗(a|sℓi) to reduce
variance at state sℓi cannot differ from the optimal b∗(a|sℓ+1

i ) of level ℓ+ 1
to Lwhich reduces the variance of b∗(a|sℓ+1

j ) to b∗(a|sLm).
Step 3 (Starting state s1

1:) Finally we conclude by stating that the
starting state s1

1 we have the estimate of the return as follows:

Yn(s
1
1) =

∑
a

π(a|s1
1)

 1
TKL (s

1
1,a)

Tn(s
1
1,a)∑

h=1

Rh(s
1
1,a) + γ

∑
s2
j

P(s2
j |s

1
1,a)Yn(s2

j)

 .

Then we have the expectation of Yn(s1
1) as follows:

E[Yn(s1
1)]

(a)
=

∑
a

π(a|s1
1)

µ(s1
1,a) + γ

∑
s2
j

P(s2
j |s

1
1,a)vπn(Yn(s2

j))


where, in (a) the vπn(s1

j) = E[Yn(s1
1)]. Then we can also calculate the

variance of Yn(s1
1) as follows:

Var[Yn(s1
1)] =

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
Tn(s1

1,a) + γ
2
∑
s2
j

P(s2
j |s

1
1,a)Var[Yn(s2

j)]

]

Then from the previous step 2 we can show that to reduce the variance
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Var[Yn(s1
1)] we should have the sampling proportion at s1

1 as follows:

b∗(a|s1
1) ∝

√√√√π2(a|s1
1)

[
σ2(s1

1,a) + γ2
∑
s2
j

P(s2
j |s

1
1,a)B2(s2

j)

]

where, in (a) the s2
j is the state that follows after taking action a at state s1

1,
and Bs1

j
is defined in (2.4).

A.6 MSE of the Oracle in Tree MDP
Proposition 2. (Restatement) Let there be an oracle which knows the state-
action variances and transition probabilities of the L-depth tree MDP T. Let the
oracle take actions in the proportions given by Theorem 1. Let D be the observed
data over n state-action-reward samples such that n = KL. Then the oracle suffers
a MSE of

L∗
n(b) =

L∑
ℓ=1

[
B2(sℓi)

T∗,K
L (sℓi)

+ γ2
∑
a

π2(a|sℓi)
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)

B2(sℓ+1
j )

T∗,K
L (sℓ+1

j )

]
.

where, T∗,K
L (sℓi) denotes the optimal state samples of the oracle at the end of episode

K.

Proof. Step 1 (Arbitrary episode k): First we start at an arbitrary episode
k. For brevity we drop the index k in our notation in this step. Let n ′ be
the total number of samples collected up to the k-th episode. We define
the estimate of the return from starting state after total of n ′ samples as

Yn ′(s1
1) =

∑
a

π(a|s1
1)

 1
Tn ′(s1

1,a)

Tn ′(s1
1,a)∑

h=1

Rh(s
1
1,a) + γ

∑
s2
j

P(s2
j |s

1
1,a)Yn ′(s2

j)

 .
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Then we define the MSE as

ED

[(
Yn ′(s1

1) − µ(Yn ′(s1
1))
)2
]
= Var(Yn ′(s1

1)) + bias2(Yn ′(s1
1)).

Again it can be shown using Theorem 1 that once all the state-action pairs
are visited once we have the bias to be zero. So we want to reduce the
variance Var(Yn ′(s1

1)). Note that the variance is given by

Var[Yn ′(s1
1)] =

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
Tn ′(s1

1,a)︸ ︷︷ ︸
Variance of s1

1

+γ2
∑
s2
j

P(s2
j |s

1
1,a) Var[Yn ′(s2

j)]︸ ︷︷ ︸
Variance of s2

j in level 2

]
.

(A.14)

Then we can show from the result of Theorem 1 that to minimize the
Var[Yn ′(s1

1)] the optimal sampling proportion for the level 0 is given by:

b∗(a|s1
1) =

√∑
s2
j
π2(a|s1

1)

[
σ2(s1

1,a) + γ2P(s2
j |s

1
1,a)B2

s2
j

]
B(s1

1)

where, s2
j are the next states of the state s1

1, and Bs1
1

as defined in (2.4).
Let the optimal number of samples of the state-action pair (sℓi,a) that
an oracle can take in the k-th episode be denoted by T∗,K

L (sℓi,a). Also let
the total number of samples taken in state s1

1 be T∗,K
L (s1

1). It follows then
n ′ =

∑
sℓj∈S T

∗,k
n ′ (sℓj). Then we have

T∗,k
n ′ (s

1
1,a) =

√∑
s2
j
π2(a|s1

1)

[
σ2(s1

1,a) + γ2P(s2
j |s

1
1,a)B2

s2
j

]
Bs1

1

Tkn ′(s1
1).

where we define the normalization factor Bsℓj as in (2.4) and Tkn ′(s1
1) is the

actual total number of times the state s1
1 is visited. Plugging this back in
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(A.14) we get that

Var[Yn′(s1
1)] =

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T∗,k
n′ (s

1
1,a)

+γ2
∑
s2
j

P(s2
j |s

1
1,a)Var[Yn′(s2

j)]

]

=
B(s1

1)

T∗,k
n′ (s

1
1)

∑
a

π2(a|s1
1)σ

2(s1
1,a)√∑

s2
j
π2(a|s1

1)

[
σ2(s1

1,a) +γ2P2(s2
j |s

1
1,a)B2

s2
j

] +γ2
∑
a

π2(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)Var[Yn′(s2

j)]

(a)

⩽
B(s1

1)

T∗,k
n′ (s

1
1)

∑
a

∑
s2
j
π2(a|s1

1)

[
σ2(s1

1,a) +γ2P2(s2
j |s

1
1,a)B2

s2
j

]
√∑

s2
j
π2(a|s1

1)

[
σ2(s1

1,a) +γ2P(s2
j |s

1
1,a)B2

s2
j

] +γ2
∑
a

π2(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)Var[Yn′(s2

j)]

=
B
s1

1

T∗,k
n′ (s

1
1)

∑
a

√√√√∑
s2
j

π2(a|s1
1)

[
σ2(s1

1,a) +γ2P(s2
j |s

1
1,a)B2

s2
j

]
+γ2

∑
a

π2(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)Var[Yn′(s2

j)]

(b)
=

B2
s1

1

T∗,k
n′ (s

1
1)

+γ2
∑
a

π2(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)

∑
a′
π2(a ′|s2

j)

[
σ2(s2

j ,a ′)

Tk
n′(s

2
j ,a ′)

+γ2
∑
s3
m

P(s3
m|s2

j ,a ′)Var[Yn′(s3
m)]

]
︸ ︷︷ ︸

Var[Yn′ (s2
j)]

(c)

⩽
B2
s1

1

T∗,k
n′ (s

1
1)

+γ2
∑
a

π2(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)

B2
s2
j

T∗,k
n′ (s

2
j)

+γ4
∑
a

π2(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)

∑
a′
π2(a ′|s2

j)
∑
s3
m

P(s3
m|s2

j ,a ′)Var[Yn′(s3
m)]

(d)

⩽
L∑
ℓ=1

 B2(sℓi)

T∗,k
n′ (s

ℓ
i)

+γ2ℓ
∑
a

π2(a|sℓi)
∑
sℓ+1
j

P(sℓ+1
j |sℓi ,a)

B2(sℓ+1
j )

T∗,k
n′ (s

ℓ+1
j )



where, (a) follows as γ2B2
s1
j
⩾ 0, (b) follows by the definition of Var[Ys2

j
]

and the definition of B(s1
1) and Tkn ′(s2

j) is the actual number of samples
observed for s2

j , (c) follows by substituting the value of T∗,k
n ′ (s2

j ,a ′) =

b∗(a ′|s2
j)/B(s

2
j), and (d) follows when unrolling the equation for L times.

Step 2 (End of K episodes): Note that the above derivation holds for
an arbitrary episode k which consist of L step horizon from root to leaf.
Hence the MSE of the oracle after K episodes when running behavior
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policy b is given as

L∗
n(b) =

L∑
ℓ=1

 B2(sℓi)

T∗,K
n (sℓi)

+ γ2ℓ
∑
a

π2(a|sℓi)
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)

B2(sℓ+1
j )

T∗,K
n (sℓ+1

j )


Note that n =

∑
a

∑
sℓi∈S T

∗,K
n (sℓi,a) is the total samples collected after K

episodes of L trajectories. This gives the MSE following optimal proportion
in Theorem 1.

A.7 Support Lemmas
Lemma A.2. (Wald’s lemma for variance) (Resnick, 2019) Let {Ft} be a
filtration and Rt be a Ft-adapted sequence of i.i.d. random variables with vari-
ance σ2. Assume that Ft and the σ-algebra generated by {Rt ′ : t

′ ⩾ t+ 1} are
independent and T is a stopping time w.r.t. Ft with a finite expected value. If
E
[
R2

1
]
<∞ then

E

( T∑
t ′=1

Rt ′ − Tµ

)2 = E[T ]σ2

Lemma A.3. (Hoeffding’s Lemma)(Massart, 2007) Let Y be a real-valued
random variable with expected value E[Y] = µ, such that a ⩽ Y ⩽ b with
probability one. Then, for all λ ∈ R

E
[
eλY
]
⩽ exp

(
λµ+

λ2(b− a)2

8

)
Lemma A.4. (Concentration lemma 1) Let Vt = Rt(s,a) −E[Rt(s,a)] and
be bounded such that Vt ∈ [−η,η]. Let the total number of times the state-action
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(s,a) is sampled be T . Then we can show that for an ϵ > 0

P

(∣∣∣∣∣ 1T
T∑
t=1

Rt(s,a) − E[Rt(s,a)]

∣∣∣∣∣ ⩾ ϵ
)

⩽ 2 exp
(
−

2ϵ2T

η2

)
.

Proof. Let Vt = Rt(s,a) − E[Rt(s,a)]. Note that E[Vt] = 0. Hence, for the
bounded random variable Vt ∈ [−η,η] (by Assumption 2) we can show
from Hoeffding’s lemma in Theorem A.3 that

E[exp (λVt)] ⩽ exp
(
λ2

8 (η− (−η))
2
)

⩽ exp
(
2λ4η2)

Let st−1 denote the last time the state s is visited and action a is sampled.
Observe that the reward Rt(s,a) is conditionally independent. For this
proof we will only use the boundedness property of Rt(s,a) guaranteed by
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Assumption 2. Next we can bound the probability of deviation as follows:

P

(
T∑
t=1

(Rt(s,a) − E[Rt(s,a)]) ⩾ ϵ
)

= P

(
T∑
t=1

Vt ⩾ ϵ

)
(a)
= P

(
eλ

∑T
t=1Vt ⩾ eλϵ

)
(b)

⩽ e−λϵE
[
e−λ

∑T
t=1Vt

]
= e−λϵE

[
E
[
e−λ

∑T
t=1Vt

∣∣sT−1

]]
(c)
= e−λϵE

[
E
[
e−λVT |ST−1

]
E
[
e−λ

∑T−1
t=1 Vt

∣∣sT−1

]]
⩽ e−λϵE

[
exp

(
2λ4η2)E [e−λ∑T−1

t=1 Vt
∣∣sT−1

]]
= e−λϵe2λ2η2E

[
e−λ

∑T−1
t=1 Vt

]
...
(d)

⩽ e−λϵe2λ2Tη2

(e)

⩽ exp
(
−

2ϵ2

Tη2

)
(A.15)

where (a) follows by introducing λ ∈ R and exponentiating both sides,
(b) follows by Markov’s inequality, (c) follows as Vt is conditionally inde-
pendent given sT−1, (d) follows by unpacking the term for T times and (e)

follows by taking λ = ϵ/4Tη2. Hence, it follows that

P

(∣∣∣∣∣ 1T
T∑
t=1

Rt(s,a) − E[Rt(s,a)]

∣∣∣∣∣ ⩾ ϵ
)

= P

(
T∑
t=1

(Rt(s,a) − E[Rt(s,a)]) ⩾ Tϵ
)

(a)

⩽ 2 exp
(
−

2ϵ2T

η2

)
.
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where, (a) follows by (A.15) by replacing ϵwith ϵT , and accounting for
deviations in either direction.

Lemma A.5. (Concentration lemma 2) Let µ2(s,a) = E
[
R2
t(s,a)

]
. Let

Rt(s,a) ⩽ 2η and R2
t(s,a) ⩽ 4η2 for any time t and following Assumption 2.

Let n = KL be the total budget of state-action samples. Let

Cn(η, δ) = (2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s,a)
.

Define the event

ξδ =

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

R2
t(s,a) − µ2(s,a)

∣∣∣∣∣∣ ⩽ Cn(η, δ)


⋂

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

Rt(s,a) − µ(s,a)

∣∣∣∣∣∣ ⩽ Cn(η, δ)




(A.16)

Then we can show that P (ξδ) ⩾ 1 − 2δ.

Proof. First note that the total budget n = KL. Observe that the ran-
dom variable Rkt (s,a) and R(2),k

t (s,a) are conditionally independent given
the previous state Skt−1. Also observe that for any η > 0 we have that
Rkt (s,a),R

(2),k
t (s,a) ⩽ 2η+ 4η2, where R(2),k

t (s,a) = (Rkt (s,a))2. Hence we
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can show that

P

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

R2
t(s,a) − µ2(s,a)

∣∣∣∣∣∣ ⩾ Cn(η, δ)




⩽ P

⋃
s∈S

⋃
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

R2
t(s,a) − µ2(s,a)

∣∣∣∣∣∣ ⩾ Cn(η, δ)




(a)

⩽
S∑
s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp
(
−

2Tn
4(η2 + η)2 ·

4(η2 + η)2 log(SAn(n+ 1)/δ)
2Tn(s,a)

)
= δ.

where, (a) follows from Theorem A.4. Note that in (a) we have to take a
double union bound summing up over all possible pulls Tn from 1 to n as
Tn is a random variable. Similarly we can show that

P

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

Rt(s,a) − µ(s,a)

∣∣∣∣∣∣ ⩾ Cn(η, δ)




(a)

⩽
S∑
s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp
(
−

2Tn
4(η2 + η)2 ·

4(η2 + η)2 log(SAn(n+ 1)/δ)
2Tn(s,a)

)
= δ.

where, (a) follows from Theorem A.4. Hence, combining the two events
above we have the following bound

P (ξδ) ⩾ 1 − 2δ.

Corollary A.6. Under the event ξδ in (A.16) we have for any state-action pair
in an episode k the following relation with probability greater than 1 − δ

|σ̂kt (s,a) − σ(s,a)| ⩽ (2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2TKL (s,a)
.
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where, TKL (s,a) is the total number of samples of the state-action pair (s,a) till
episode k.

Proof. Observe that the event ξδ bounds the sum of rewards Rkt (s,a) and
squared rewards Rk,(2)

t (s,a) for any TKL (s,a) ⩾ 1. Hence we can directly
apply the Theorem A.5 to get the bound.

Lemma A.7. (Bound samples in level 2) Suppose that, at an episode k, the
action p in state s2

i in a 2-depth T is under-pulled relative to its optimal proportion.
Then we can lower bound the actual samples TKL (s2

i,p) with respect to the optimal
samples T∗,K

L (s2
i,p) with probability 1 − δ as follows

TKL (s
2
i,p) ⩾ T∗,K

L (s2
i,p) − 4cb∗(p|s2

i)

√
log(H/δ)

B(s2
i)b

∗,3/2
min (s

2
i)

√
TKL (s

2
i) − 4Ab∗(p|s2

i),

where B(s2
i) is defined in (2.4), c = (η+ η2)/

√
2, and H = SAn(n+ 1).

Proof. Step 1 (Properties of the algorithm): Let us first define the confi-
dence interval term for (s,a) at time t as

Ukt (s,a) = 2c

√
log(H/δ)
Tkt (s

2
i,a)

(A.17)

where, c = (η+ η2)/
√

2, and H = SAn(n+ 1). Also note that on ξδ using
Theorem A.6 we have

σ̂kt (s
2
i,a)

(a)

⩽ σ(s2
i,a) +Ukt (s,a)

=⇒ σ̂
(2),k
t (s2

i,a) ⩽ σ2(s2
i,a) + 2σ(s2

i,a)Ukt (s,a) +U
(2),k
t (s,a)

= σ2(s2
i,a) + 4σc

√
log(H/δ)
Tkt (s

2
i,a)

+ 4c2 log(H/δ)
Tkt (s

2
i,a)

(b)

⩽ σ2(s2
i,a) + 4dc2

√
log(H/δ)
Tkt (s

2
i,a)

(A.18)
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where, (a) follows from Theorem A.6, and (b) follows for some constant

d > 0 and noting that

√
log(H/δ)
Tkt (s

2
i,a)

>
log(H/δ)
Tkt (s

2
i,a)

and c2 > c. Let a be an

arbitrary action in state s2
i. Recall the definition of the upper bound used

in ReVar when t > 2SA:

U
k

t+1(a|s
2
i) =

b̂kt (a|s
2
i)

Tkt (s
2
i,a)

=

√
π2(a|s2

i)σ̂
u
(2),k
t (s2

i,a)
Tkt (s

2
i,a)

=

√
π2(a|s2

i)
(
σ̂
(2),k
t (s2

i,a) + 4dc2
√

log(H/δ)
Tkt (s

2
i ,a)

)
Tkt (s

2
i,a)

Under the good event ξδ using Theorem A.6, we obtain the following
upper and lower bounds for Ukt+1(a|s

2
i):

√
π2(a|s2

i)σ
2(s2

i,a)
Tkt (s

2
i,a)

(a)

⩽ U
k

t+1(a|s
2
i)

(b)

⩽

√
π2(a|s2

i)
(
σ2(s2

i,a) + 8dc2
√

log(H/δ)
Tkt (s

2
i ,a)

)
Tkt (s

2
i,a)

(A.19)

where, (a) follows as σ2(s2
i,a) ⩽ σ̂

(2),k
t (s2

i,a) + 4dc2
√

log(H/δ)/T tk(s2
i,a)

and (b) follows as σ̂(2),k
t (s2

i,a)+4dc2
√

log(H/δ)/T tk(s2
i,a) ⩽ σ̂

(2),k
t (s2

i,a)+
8dc2

√
log(H/δ)/T tk(s2

i,a). Let ReVar chooses to pull action m at t + 1 >
2SA in sLi for the last time. Then we have that for any action p ̸= m the
following:

U
k

t+1(p|s
2
i) ⩽ U

k

t+1(m|s2
i).

Recall that Tkt (s2
i,m) is the last time the action m is sampled. Hence,

Tkt (s
2
i,m) = TKL (s

2
i,m) − 1 because we are sampling actionm again in time

t+ 1. Note that TKL (s2
i,m) is the total pulls of actionm at the end of time
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n. It follows from (A.19) then

U
k

t+1(m|s2
i) ⩽

√
π2(m|s2

i)
(
σ2(s2

i,m) + 8dc2
√

log(H/δ)
Tkt (s

2
i ,m)

)
Tkt (s

2
i,m)

=

√
π2(m|s2

i)
(
σ2(s2

i,m) + 8dc2
√

log(H/δ)
Tkt (s

2
i ,m)−1

)
Tkt (s

2
i,m) − 1 .

Let p be the arm in state s2
i that is under-pulled. Recall that TKL (s2

i) =∑
a T

K
L (s

2
i,a). Using the lower bound in (A.19) and the fact that Tkt (s2

i,p) ⩽
TKL (s

2
i,p), we may lower bound Ikt+1(p|s

2
i) as

U
k

t+1(p|s
2
i) ⩾

√
π2(p|s2

i)σ
2(s2

i,p)
Tkt (s

2
i,p)

⩾

√
π2(p|s2

i)σ
2(s2

i,p)
TKL (s

2
i,p)

.

Combining all of the above we can show

√
π2(p|s2

i)σ
2(s2

i,p)
TKL (s

2
i,p)

⩽

√
π2(m|s2

i)
(
σ2(s2

i,m) + 8dc2
√

log(H/δ)
TKL (s2

i ,m)−1

)
TKL (s

2
i,m) − 1 .

(A.20)

Observe that there is no dependency on t, and thus, the probability that
(A.20) holds for any p and for any m is at least 1 − δ (probability of event
ξδ).

Step 2 (Lower bound on TKL (s2
i,p)): If an action p is under-pulled

compared to its optimal allocation without taking into account the ini-
tialization phase,i.e., TKL (s2

i,p) − 2 < b(p|s2
i)(Tn(s

2
i) − 2A), then from the

constraint
∑
a

(
TKL (s

2
i,a) − 2

)
= TKL (s

2
i)− 2A and the definition of the opti-

mal allocation, we deduce that there exists at least another actionm that is
over-pulled compared to its optimal allocation without taking into account
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the initialization phase, i.e., Tkn(s2
i,m) − 2 > b(m|s2

i)(T
K
L (s

2
i) − 2SA).

√
π2(p|s2

i)σ
2(s2

i,p)
TKL (s

2
i,p)

⩽

√
π2(m|s2

i)
(
σ2(s2

i,m) + 8dc2
√

log(H/δ)
TKL (s2

i ,m)−1

)
TKL (s

2
i,m) − 1

(a)

⩽

√
π2(m|s2

i)
(
σ2(s2

i,m) + 8dc2
√

log(H/δ)
TKL (s2

i ,m)−2

)
TKL (s

2
i,m) − 1

(b)

⩽

√
π2(m|s2

i)σ
2(s2

i,m) + 4dπ(m|s2
i)c
√

log(H/δ)
TKL (s2

i ,m)−2

T∗,K
L (s2

i,m)

(c)

⩽

√
π2(m|s2

i)σ
2(s2

i,m) +
(

4dc
√

log(H/δ)
b∗(m|s2

i)(T
K
L (s2

i)−2SA)+1

)
T∗,K
L (s2

i,m)

(d)

⩽
B(s2

i)

TKL (s
2
i)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

i)b
∗(m|s2

i)
3/2

+
4AB(s2

i)

T
(2),K
L (s2

i)

(e)

⩽
B(s2

i)

TKL (s
2
i)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

i)b
∗,3/2
min (s

2
i)

+
4AB(s2

i)

T
(2),K
L (s2

i)
.

(A.21)

where, (a) follows as TKL (s2
i,m)−2 ⩽ TKL (s

2
i,m)−1, (b) follows as T∗,(k)

n (s2
i,m) ⩾

TKL (s
2
i,m)−1 as actionm is over-pulled and

√
a+ b ⩽

√
a+
√
b fora,b > 0,

(c) follows as TKL (s2
i) =

∑
a T

K
L (s

2
i,a) and Tkn(s2

i,m)−2 > b∗(m|s2
i)(T

K
L (s

2
i)−

2SA), (d) follows by setting the optimal samples T∗,K
L (s2

i,m) =

√
π2(m|s2

i)σ
2(s2

i ,m)

B(s2
i)

TKL (s
2
i),

and (e) follows as b∗(m|s2
i) ⩾ bmin(s

2
i). By rearranging (A.21) , we obtain
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the lower bound on TKL (s2
i,p) :

TKL (s
2
i,p) ⩾

√
π2(p|s2

i)σ
2(s2

i,p)
B(s2

i)

TKL (s2
i)
+ 4dcx

√
log(H/δ)

T
(3/2),K
L (s2

i)b
∗,3/2
min (s2

i)
+

4AB(s2
i)

T
(2),K
L (s2

i)

=

√
π2(p|s2

i)σ
2(s2

i,p)
B(s2

i)

TKL (s2
i)

 1

1 + 4dc
√

log(H/δ)

B(s2
i)T

(1/2),K
L (s2

i)b
∗,3/2
min (s2

i)
+ 4A
Tkn(s

2
i)


(a)

⩾

√
π2(p|s2

i)σ
2(s2

i,p)
B(s2

i)

TKL (s2
i)

[
1 − 4dc

√
log(H/δ)

B(s2
i)T

(1/2),K
L (s2

i)b
∗,3/2
min (s

2
i)

−
4A
Tkn(s

2
i)

]

⩾ T∗,K
L (s2

i,p) − 4dcb∗(p|s2
i)

√
log(H/δ)

B(s2
i)b

∗,3/2
min (s

2
i)

√
TKL (s

2
i) − 4Ab∗(p|s2

i),

where in (a) we use 1/(1 + x) ⩾ 1 − x (for x > −1 ).

Lemma A.8. (Bound samples in level 1) Suppose that, at an episode k, the
action p in state s1

1 in a 2-depth T is under-pulled relative to its optimal proportion.
Then we can lower bound the actual samples TKL (s1

1,p) with respect to the optimal
samples T∗,K

L (s1
1,p) with probability 1 − δ as follows

TKL (s
1
1,p) ⩾ T∗,K

L (s1
1,p) − 4cb∗(p|s1

1)

√
log(H/δ)

B(s1
1)b

∗,3/2
min (s

1
1)

√
TKL (s

1
1) − 4Ab∗(p|s1

1)

− γπ(m|s1
1)
TKL (s

1
1)

B2(s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

B(s2
j)

b∗(m|s2
j)
·

∑
a ′

[
T∗,K
L (s2

j ,a ′) + 4cb∗(a ′|s2
j)

√
log(H/δ)
b
∗,3/2
min (s

2
j)

√
TKL (s

1
1) + 4Ab(a ′|s2

j)

]

where B(s2
i) is defined in (2.4), c = (η+ η2)/

√
2, and H = SAn(n+ 1).

Proof. Step 1 (Properties of the algorithm): Again note that on ξδ using
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Theorem A.6 we have

σ̂kt (s
1
1,a) ⩽ σ(s1

1,a) +Ukt (s,a) =⇒ σ̂
(2),k
t (s1

1,a) ⩽ σ2(s1
1,a) +U(2),k

t (s,a)

(a)
= σ2(s1

1,a) + 4dc2

√
log(H/δ)
Tkt (s

1
1,a)

for any action a in s1
1, where (a) follows by the definition of U(2),k

t (A.17),
some constant d > 0 and the same derivation as in (A.18). Let a be an
arbitrary action in state s1

1. Recall the definition of the upper bound used in
ReVar when t > 2SA and defineW(k, t, s,a) = σ̂(2),k

t (s,a)+4dc2
√

log(H/δ)
Tkt (s,a) :

U
k

t+1(a|s
1
1) =

b̂kt (a|s
1
1)

Tkt (s
1
1,a) =

√∑
s2
j
π2(a|s1

1)
[
σ̂u

(2),k
t (s1

1,a) + γ2P(s2
j |s

1
1,a)B̂(2),k

t (s2
j)
]

Tkt (s
1
1,a)

=

√∑
s2
j
π2(a|s1

1)
[
W(k, t, s1

1,a) + γ2P(s2
j |s

1
1,a)

∑
a ′

√
π2(a ′|s2

j)W(k, t, s2
j ,a ′)

]
Tkt (s

1
1,a)

Under the good event ξδ using the Theorem A.6, we obtain the following
upper and lower bounds for Ukt+1(a|s

1
1):

U
k
t+1(a|s

1
1) ⩽

√√√√∑
s2
j

π2(a|s1
1)

[
2W(k, t,s1

1,a) +γ2P(s2
j |s

1
1,a)

∑
a′

√
π2(a ′|s2

j)2W(k, t,s2
j ,a ′)

]
Tkt (s

1
1,a)

U
k
t+1(a|s

1
1) ⩾

√
π2(a|s1

1)σ
2(s1

1,a)
Tkt (s

1
1,a)

(A.22)

where, (a) follows as σ2(s1
1,a) ⩽ σ̂(2),k

t (s1
1,a) + 4dc2

√
log(H/δ)/T tk(s1

1,a)
and (b) follows as σ̂(2),k

t (s1
1,a)+4dc2

√
log(H/δ)/T tk(s1

1,a) ⩽ σ̂(2),k
t (s1

1,a)+
8dc2

√
log(H/δ)/T tk(s1

1,a). Let ReVar chooses to take action m at t + 1 in
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s1
1 for the last time. Then we have that for any action p ̸= m the following:

U
k

t+1(p|s
1
1) ⩽ U

k

t+1(m|s1
1).

Recall that Tkt (s1
1,m) is the last time the action m is sampled. Hence,

Tkt (s
1
1,m) = TKL (s

1
1,m) − 1 because we are sampling actionm again in time

t+ 1. Note that TKL (s1
1,m) is the total pulls of actionm at the end of time

n. It follows from (A.22)

U
k
t+1(m|s1

1) ⩽

√√√√∑
s2
j

π2(a|s1
1)

[
2W(k, t,s1

1,a) +γ2P(s2
j |s

1
1,a)

∑
a′

√
π2(a ′|s2

j)2W(k, t,s2
j ,a ′)

]
Tkt (s

1
1,a)

(a)

⩽

√∑
s2
j

(
π2(a|s1

1)2W(k, t,s1
1,a)

)
+γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)

[∑
a′

√
π2(a ′|s2

j)2W(k, t,s2
j ,a ′)

]
Tkt (s

1
1,a)

(b)

⩽

√∑
s2
j
π2(m|s1

1)

(
σ2(s1

1,m) + 8dc2
√

log(H/δ)
TKL (s1

1 ,m)−1

)
TKL (s1

1,m) − 1

+γπ(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)

∑
a′


√
π2(a ′|s2

j)

(
σ2(s2

j ,a ′)+8dc2
√

log(H/δ)
TKL (s2

j ,a′)

)
TKL (s2

j ,a ′) − 1

 .

where, (a) follows as
√
a+ b ⩽

√
a+
√
b for a,b > 0 and (b) follows as

Tkt (s
1
1,a) ⩾ Tkt (s2

j ,a ′) where s2
j is the next state of s1

1 following action a.
Let p be the arm in state s1

1 that is under-pulled. Recall that TKL (s1
1) =∑

a T
K
L (s

1
1,a). Using the lower bound in (A.22) and the fact that Tkt (s1

1,p) ⩽
TKL (s

1
1,p), we may lower bound Ukt+1(p|s

1
1) as

U
k

t+1(p|s
1
1) ⩾

√
π2(p|s2

i)σ
2(s2

i,p)
Tt(s1

1,p) ⩾

√
π2(p|s2

i)σ
2(s2

i,p)
TKL (s

1
1,p) .
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Combining all of the above we can show

√
π2(p|s2

i)σ
2(s2

i,p)
TKL (s

1
1,p) ⩽

√∑
s2
j
π2(m|s1

1)
(
σ2(s1

1,m) + 8dc2
√

log(H/δ)
TKL (s1

1,m)−1

)
TKL (s

1
1,m) − 1

+ γπ(m|s1
1)
∑
s2
j

P(s2
j |s

1
1,m)

∑
a ′


√
π2(a ′|s2

j)
(
σ2(s2

j ,a ′) + 8dc2
√

log(H/δ)
TKL (s2

j ,a ′)−1

)
TKL (s

2
j ,a ′) − 1

 .

(A.23)

Observe that there is no dependency on t, and thus, the probability that
(A.23) holds for any p and for any m is at least 1 − δ (probability of event
ξδ).

Step 2 (Lower bound on TKL (s1
1,p)): If an action p is under-pulled

compared to its optimal allocation without taking into account the ini-
tialization phase,i.e., TKL (s1

1,p) − 2 < b∗(p|s1
1)(T

K
L (s

1
1) − 2A), then from the

constraint
∑
a

(
TKL (s

1
1,a) − 2

)
= TKL (s

1
1)− 2A and the definition of the opti-

mal allocation, we deduce that there exists at least another actionm that is
over-pulled compared to its optimal allocation without taking into account
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the initialization phase, i.e., Tkn(s1
1,m) − 2 > b∗(m|s1

1)(T
K
L (s

1
1) − 2SA).

π(p|s1
1)σ(s

1
1,p)

TKL (s1
1,p)

⩽

√∑
s2
j
π2(m|s1

1)

(
σ2(s1

1,m) + 8dc2
√

log(H/δ)
TKL (s1

1 ,m)−2

)
TKL (s1

1,m) − 1

+γπ(m|s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

∑
a′


√
π2(a ′|s2

j)

(
σ2(s2

j ,a ′) + 8dc2
√

log(H/δ)
TKL (s2

j ,a′)−2

)
TKL (s2

j ,a ′) − 1


(a)

⩽
∑
s2
j

√
π2(m|s1

1)σ
2(s1

1,m) + 4dc
√

log(H/δ)
TKL (s1

1 ,m)−2

T∗,K
L (s1

1,m)

+γπ(m|s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

∑
a′


√
π2(a ′|s2

j)σ
2(s2

j ,a ′) + 4dc
√

log(H/δ)
TKL (s2

j ,a′)−2

T∗,K
L (s2

j ,a ′)


(b)

⩽
∑
s2
j

√
π2(m|s1

1)σ
2(s1

1,m) +

(
4dc

√
log(H/δ)

b∗(m|s1
1)(T

K
L (s1

1)−2SA)+1

)
T∗,K
L (s1

1,m)

+γπ(m|s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

∑
a′


√
π2(a ′|s2

j)σ
2(s2

j ,a ′) + 4dc
√

log(H/δ)
b∗(a′|s2

j)(T
K
L (s2

j)−2SA)+1

T∗,K
L (s2

j ,a ′)


(c)

⩽
∑
s2
j

[
B(s1

1)

TKL (s1
1)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s1

1)b
∗(m|s1

1)
3/2

+
4AB(s1

1)

T
(2),K
L (s1

1)

]

+γπ(m|s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

∑
a′

 B(s2
j)

TKL (s2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s2

j)
+

4AB(s2
j)

T
(2),K
L (s2

j) − 1


︸ ︷︷ ︸

V(s2
j)

(d)

⩽
∑
s2
j

[
B(s1

1)

TKL (s1
1)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s1

1)b
∗,3/2
min (s1

1)
+

4AB(s1
1)

T
(2),K
L (s1

1) − 1

]
+γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)V(s2

j)

(A.24)

where, (a) follows as T∗,(k)
n (s1

1,m) ⩾ TKL (s
1
1,m) − 1 as action m is over-

pulled, (b) follows as TKL (s1
1) =

∑
a T

K
L (s

1
1,a) and Tkn(s1

1,m)−2 > b∗(m|s1
1)(T

K
L (s

1
1)−

2SA) and a similar argument follows in state s2
j , (c) follows T∗,K

L (s1
1,m) =√

π2(m|s1
1)σ

2(s1
1,m)

B(s1
1)

TKL (s
1
1), and using the result of theorem A.7. Finally, (d)

follows as b∗(m|s1
1) ⩾ bmin(s

1
1). In (d) we also define the total over samples
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in state s2
j as V(s2

j) such that

V(s2
j) :=

∑
a ′

[
B(s2

j)

TKL (s
2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s

2
j)

+
4AB(s2

j)

T
(2),K
L (s2

j) − 1

]

By rearranging (A.24) , we obtain the lower bound on TKL (s1
1,p) :

TKL (s1
1,p) ⩾

√
π2(p|s1

1)σ
2(s1

1,p)
B(s1

1)

TKL (s1
1)

+ 4dc
√

log(H/δ)

T
(3/2),K
L (s1

1)b
∗,3/2
min (s1

1)
+

4AB(s1
1)

T
(2),K
L (s1

1)
+γπ(m|s1

1)
∑
s2
j
P(s2

j |s
1
1,m)V(s2

j)

=

√
π2(p|s1

1)σ
2(s1

1,p)
B(s1

1)

TKL (s1
1)

 1

1 + 4dc
√

log(H/δ)

B(s1
1)T

(1/2),K
L (s1

1)b
∗,3/2
min (s1

1)
+ 4A
Tkn(s1

1)
+γπ(m|s1

1)
TKL (s1

1)

B(s1
1)

∑
s2
j
P(s2

j |s
1
1,m)V(s2

j)



⩾

√
π2(p|s1

1)σ
2(s1

1,p)
B(s1

1)

TKL (s1
1)

 1

1 + 4dc
√

log(H/δ)

B(s1
1)T

(1/2),K
L (s1

1)b
∗,3/2
min (s1

1)
+ 4A
Tkn(s1

1)
+γπ(m|s1

1)
∑
s2
j
P(s2

j |s
1
1,m)V(s2

j)


(a)

⩾

√
π2(p|s1

1)σ
2(s1

1,p)
B(s1

1)

TKL (s1
1)

1 − 4dc
√

log(H/δ)
B(s1

1)T
(1/2),K
L (s1

1)b
∗,3/2
min (s1

1)
−

4A
Tkn(s

1
1)

−γπ(m|s1
1)
TKL (s1

1)

B(s1
1)

∑
s2
j

P(s2
j |s

1
1,m)V(s2

j)


(b)
=

√
π2(p|s1

1)σ
2(s1

1,p)
B(s1

1)

TKL (s1
1)

[
1 − 4dc

√
log(H/δ)

B(s1
1)T

(1/2),K
L (s1

1)b
∗,3/2
min (s1

1)
−

4A
Tkn(s

1
1)

−γπ(m|s1
1)
TKL (s1

1)

B(s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

 B(s2
j)

TKL (s2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s2

j)
+

4AB(s2
j)

T
(2),K
L (s2

j) − 1

]
(c)

⩾ T∗,K
L (s1

1,p) − 4dcb∗(p|s1
1)

√
log(H/δ)

B(s1
1)b

∗,3/2
min (s1

1)

√
TKL (s1

1) − 4Ab∗(p|s1
1)

−γπ(m|s1
1)

∑
s2
j

B(s2
j)T

K
L (s2

j)

b∗(m|s2
j)B(s

1
1)
P(s2

j |s
1
1,m)

 B(s2
j)

TKL (s2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s2

j)
+

4AB(s2
j)

T
(2),K
L (s2

j) − 1

]
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⩾ T∗,K
L (s1

1,p) − 4dcb∗(p|s1
1)

√
log(H/δ)

B(s1
1)b

∗,3/2
min (s1

1)

√
TKL (s1

1) − 4Ab∗(p|s1
1)

−γπ(m|s1
1)
TKL (s1

1)

B2(s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

(
B(s2

j)

b∗(m|s2
j)

∑
a′

[
T∗,K
L (s2

j ,a ′)

+4dcb∗(a ′|s2
j)

√
log(H/δ)
b
∗,3/2
min (s2

j)

√
TKL (s1

1) + 4Ab∗(a ′|s2
j)


⩾ T∗,K

L (s1
1,p) − 4dcb∗(p|s1

1)

√
log(H/δ)

B(s1
1)b

∗,3/2
min (s1

1)

√
TKL (s1

1) − 4Ab∗(p|s1
1)

−γπ(m|s1
1)
TKL (s1

1)

B2(s1
1)

∑
s2
j

P(s2
j |s

1
1,m)

B(s2
j)

b∗(m|s2
j)

∑
a′

[
T∗,K
L (s2

j ,a ′)

+4dcb∗(a ′|s2
j)

√
log(H/δ)
b
∗,3/2
min (s2

j)

√
TKL (s1

1) + 4Ab∗(a ′|s2
j)



where in (a) we use 1/(1 + x) ⩾ 1 − x (for x > −1 ), in (b) we substitute
the value V(s2

j), and (c) follows as TKL (s2
j) =

(
b(m|s2

j)/B(s
2
j)
)
TKL (s

1
1).

Lemma A.9. Let the total budget be n = KL and n ⩾ 4SA. Then the total regret
in a deterministic 2-depth T at the end of K-th episode when sampling according
to the (2.8) is given by

Rn ⩽ Õ

(
B2(s1

1)
√

log(SAn11/2)

n3/2b
∗,3/2
min (s

1
1)

+ γmax
s2
j ,a
π(a|s1

1)P(s
2
j |s

1
1,a)

B2(s2
j)
√

log(SAn11/2)

n3/2b
∗,3/2
min (s

2
j)

)

where, the Õ hides other lower order terms resulting out of the expansion of the
squared terms and B(sℓi) is defined in (2.4).

Proof. Step 1 (Tkt (sℓi,a) is a stopping time): Let τ be a random variable,
which is defined on the filtered probability space. Then τ is called a
stopping time (with respect to the filtration

(
(Fn)n∈N

)
, if the following

condition holds: {τ = n} ∈ Fn for all n Intuitively, this condition means
that the "decision" of whether to stop at time n must be based only on
the information present at time n, not on any future information. Now
consider the state sℓi and an action a. At each time step t + 1, the ReVar
algorithm decides which action to pull according to the current values
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of the upper-bounds
{
σ̂u
k

t+1(s
ℓ
i,a)

}
a

in state sℓi. Thus for any action a,
Tkt+1(s

ℓ
i,a) depends only on the values

{
Tkt+1(s

ℓ
i,a)

}
a

and
{
σ̂kt (s

ℓ
i,a)

}
k

in state sℓi. So by induction, Tkt (sℓi,a) depends on the sequence of re-
wards

{
Rk1 (s

ℓ
i,a), . . . ,Rk

Tkt (s
ℓ
i ,a)

(sℓi,a)
}

, and on the samples of the other
arms (which are independent of the samples of arm k ). So we deduce
that TKL (sℓi,a) is a stopping time adapted to the process

(
Rkt (s

ℓ
i,a)

)
t⩽n.

Step 2 (Regret bound): By definition, given the dataset D after K
episodes each of trajectory length L, we have n state-action samples. Then
the loss of the algorithm is

Ln = ED

[(
Yn(s

1
1) − v

π(s1
1)
)2
]

= ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I{ξδ}

]
+ ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I

{
ξCδ

}]
where, n = KL is the total budget. To handle the second term, we recall
that ξCδ holds with probability 2δ. Further due to the bounded reward
assumption we have

ED

[(
Yn(s

1
1) − v

π(s1
1)
)2
]
⩽ 2n2Kδ(4η2+2η) ⩽ 2(4η2+2η)n2Aδ (1 + log (c2/2nAδ))

where c2 > 0 is a constant. Following Lemma 2 of (Carpentier and Munos,
2011) and setting δ = n−7/2 gives us an upper bounds of the quantity

ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I

{
ξCδ

}]
⩽ O

(
logn
n3/2

)
.

Note that Carpentier and Munos (2011) uses a similar δ = n−7/2 due to
the sub-Gaussian assumption on their reward distribution. Also observe
that under the Assumption 2 we also have a sub-Gaussian assumption.
Hence we can use Lemma 2 of Carpentier and Munos (2011). Now, using
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the definition of Yn(s1
1) and Theorem A.2 we bound the first term as

ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I{ξδ}

]
(a)
= Var[Yn(s1

1)]E[TKL (s1
1)]

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)]

+ γ2
∑
a

π2(a|s1
1)
∑
s2
j

P(s2
j |s

1
1,a)Var[Yn(s2

j)]E[TKL (s2
j ,a)]

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)]

+ γ2
∑
a

π2(a|s1
1)
∑
s2
j

P(s2
j |s

1
1,a)

∑
a ′

π2(a ′|s2
j)

[
σ2(s2

j ,a ′)

T
(2),K
L (s2

j ,a ′)

]
E[TKL (s2

j ,a ′)]

(A.25)

where, (a) follows from Theorem A.2, and Tn(sℓi,a) is the lower bound
on TKL (sℓi,a) on the event ξδ. Note that as

∑
a T

K
L (s

1
1,a) = n, we also have∑

a E
[
TKL (s

1
1,a)

]
= n. Using eq. (A.25) and eq. (A.24) for

π2(a|s1
1)σ

2(s1
1,a)/Tkn(s1

1,a)

(which is equivalent to using a lower bound on TKL (s1
1,a) on the event ξδ),

we obtain

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[Tn(s1

1)]

⩽
∑
a

([
B(s1

1)

TKL (s
1
1)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s1

1)b
∗,3/2
min (s

1
1)

+
4AB(s1

1)

T
(2),K
L (s1

1) − 1

]

+ γπ(a|s1
1)
∑
s2
j

P(s2
j |s

1
1,a)

∑
a ′

[
B(s2

j)

TKL (s
2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s

2
j)

+
4AB(s2

j)

T
(2),K
L (s2

j) − 1

])2

·

E[TKL (s1
1,a)]. (A.26)
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Finally the R.H.S. of eq. (A.26) may be bounded using the fact that
∑
a E
[
TKL (s

1
1,a)

]
=

n as

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1)] ⩽
∑
a

([
B(s1

1)

TKL (s1
1)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s1

1)b
∗,3/2
min (s1

1)
+

4AB(s1
1)

T
(2),K
L (s1

1) − 1

]

+γπ(a|s1
1)

∑
s2
j

P(s2
j |s

1
1,a)

∑
a′

 B(s2
j)

TKL (s2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s2

j)
+

4AB(s2
j)

T
(2),L
K (s2

j) − 1

)2
E[TKL (s1

1,a)]

(a)

⩽ 2
([

B(s1
1)

TKL (s1
1)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s1

1)b
∗,3/2
min (s1

1)
+

4AB(s1
1)

T
(2),K
L (s1

1) − 1

])2 ∑
a

E[TKL (s1
1,a)]

+ 2
(
γπ(a|s1

1)
∑
s2
j

P(s2
j |s

1
1,a)

∑
a′

 B(s2
j)

TKL (s2
j)

+ 4dc
√

log(H/δ)
T
(3/2),K
L (s2

j)b
∗,3/2
min (s2

j)
+

4AB(s2
j)

T
(2),K
L (s2

j) − 1

)2 ∑
a

E[TKL (s1
1,a)]

(b)

⩽ Õ

B2(s1
1)
√

log(H/δ)
n3/2b

∗,3/2
min (s1

1)
+γmax

s2
j ,a
π(a|s1

1)P(s
2
j |s

1
1,a)

B2(s2
j)
√

log(H/δ)

n3/2b
∗,3/2
min (s2

j)


(c)
= Õ

B2(s1
1)
√

log(SAn11/2)

n3/2b
∗,3/2
min (s1

1)
+γmax

s2
j ,a
π(a|s1

1)P(s
2
j |s

1
1,a)

B2(s2
j)
√

log(SAn11/2)

n3/2b
∗,3/2
min (s2

j)



where, (a) follows as (a + b)2 ⩽ 2(a2 + b2) for any a,b > 0, in (b) we
have TKL (s1

1) = n, and the Õ hides other lower order terms resulting out of
the expansion of the squared terms, and (c) follows by setting δ = n−7/2

and using H = SAn(n+ 1).

A.8 Regret for a Deterministic L-Depth Tree
Theorem 2. Let the total budget be n = KL and n ⩾ 4SA. Then the total
regret in a deterministic L-depth T at the end of K-th episode when taking actions
according to (2.8) is given by

Rn ⩽ Õ

B2
s1

1

√
log(SAn11/2)

n3/2b
∗,3/2
min (s

1
1)

+γ

L∑
ℓ=2

max
sℓj ,a

π(a|s1
1)P(s

ℓ
j |s

1
1,a)

B2
sℓj

√
log(SAn11/2)

n3/2b
∗,3/2
min (s

ℓ
j)


where, the Õ hides other lower order terms and Bsℓi is defined in (2.4) and
b∗min(s) = mina b∗(a|s).
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Proof. The proof follows directly by using Theorem A.7, Theorem A.8, and
Theorem A.9.

Step 1 (Tkt (sℓi,a) is a stopping time): This step is same as Theorem A.9
as all the arguments hold true even for the L depth deterministic tree.

Step 2 (MSE decomposition): Given the dataset D of K episodes each
of trajectory length L, the MSE of the algorithm is

Ln = ED

[(
Yn(s

1
1) − v

π(s1
1)
)2
]

= ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I{ξδ}

]
+ ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I

{
ξCδ

}]
where, n = KL is the total budget. Using Theorem A.9 we can upper
bound the second term as O

(
n−3/2 log(n)

)
. Using the definition of Yn(s1

1)

and Theorem A.2 we bound the first term as

ED

[(
Yn(s

1
1) − v

π(s1
1)
)2 I{ξδ}

]
(a)
= Var[Yn(s1

1)]E[TKL (s1
1)] =

b

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)]

+ γ2
∑
a

π2(a|s1
1)
∑
s2
j

P(s2
j |s

1
1,a)Var[Yn(s2

j)]E[TKL (s2
j)]

(c)

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
E[TKL (sℓj ,a ′)]

(A.27)

where, (a) follows from Theorem A.2, (b) follows from by unrolling the
variance for Yn(s1

1), and where Tn(sℓi,a) is the lower bound on TKL (sℓi,a) on
the event ξδ. Finally, (c) follows by unrolling the variance for all the states
till level L and taking the lower bound of Tn(sℓi,a) for each state-action
pair.
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Step 2 (MSE at level L): Now we want to upper bound the total MSE
in (A.27). Using eq. (A.21) in Theorem A.7 we can directly get the MSE
upper bound for a state sLi as

∑
a ′

π2(a ′|sLi )

[
σ2(sLi ,a ′)

T
(2),K
L (sLi ,a ′)

]
E[TKL (sLi ,a ′)] ⩽ Õ

B2
sLi

√
log(SAn11/2)

n3/2bmin(sLi )

 .

Step 3 (MSE at level L− 1): This step follows directly from eq. (A.24)
in Theorem A.8. We can get the loss upper bound for a state sL−1

i (which
takes into account the loss at level L as well) as follows:

∑
a ′

(
b∗(a ′|sL−1

i )

T
(2),K
L (sL−1

i ,a ′)

)
E[TKL (sL−1

i ,a ′)]

⩽ Õ

B2
sL−1
i

√
log(SAn11/2)

n3/2bmin(s
L−1
i )

+ γmax
sLj ,a

π(a|sL−1
i )P(sLj |s

L−1
i ,a)

B2
sLj

√
log(SAn11/2)

n3/2bmin(sLj )

 .

Step 4 (MSE at arbitrary level ℓ): This step follows by combining the
results of step 2 and 3 iteratively from states in level ℓ to L under the good
event ξδ. We can get the regret upper bound for a state sℓi as

∑
a ′

(
b∗(a ′|sℓi)

T
(2),K
L (sℓi,a ′)

)
E[TKL (sℓi,a ′)]

⩽ Õ

B2
sℓi

√
log(SAn11/2)

n3/2bmin(sℓi)
+ γ

L∑
ℓ ′=ℓ+1

max
sℓ

′
j ,a

π(a|sℓ
′−1
i )P(sℓ

′

j |s
ℓ ′−1
i ,a)

B2
sℓ

′
j

√
log(SAn11/2)

n3/2bmin(sℓ
′
j )

 .

Step 4 (Regret at level 1): Finally, combining all the steps above we
get the regret upper bound for the state s1

1 as follows

Rn = Ln − L∗
n

= Õ

(
B2(s1

1)
√

log(SAn11/2)

n3/2b
∗,3/2
min (s

1
1)

+ γ

L∑
ℓ=2

max
sℓj ,a

π(a|s1
1)P(s

ℓ
j |s

1
1,a)

B2(sℓj)
√

log(SAn11/2)

n3/2b
∗3/2
min(s

ℓ
j)

)
.
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Figure A.3: A 3-depth 2-Action DAG

Remark A.10. (Stochastic MDP extension): Observe that the Theorem 2 is
quite general as the regret

Rn ⩽ Õ

B2
s1

1

√
log(SAn11/2)

n3/2b
∗,3/2
min (s

1
1)

+γ

L∑
ℓ=2

max
sℓj ,a

π(a|s1
1)P(s

ℓ
j |s

1
1,a)

B2
sℓj

√
log(SAn11/2)

n3/2b
∗,3/2
min (s

ℓ
j)


incorporates the transition probability P(s ′|s,a). Hence, the result of Theorem 2
holds not only for the deterministic case but also for the stochastic setting, when the
algorithm is provided with the knowledge of P(s ′|s,a) upto some constant scaling.
Note that ReVar does not perform any exploration to estimate the transition
probabilities, and it is not clear how to extend the current UCB based approach
that minimizes MSE to also estimate the P. We leave this direction for future
works.

A.9 DAG Optimal Sampling
Proposition 3. (Restatement) Let G be a 3-depth, A-action DAG defined in
Theorem 2.5. The minimal-MSE sampling proportions b∗(a|s1

1),b∗(a|s2
j) depend

on themselves such that b(a|s1
1) ∝ f(1/b(a|s1

1)) and b(a|s2
j) ∝ f(1/b(a|s2

j))

where f(·) is a function that hides other dependencies on variances of s and its
children.
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Proof. Step 1 (Level 3): For an arbitrary state s3
i we can calculate the

expectation and variance of Yn(s3
i) as follows:

E[Yn(s3
i)] =

∑
a

π(a|s3
i)

Tn(s3
i,a)

Tn(s
3
i ,a)∑

h=1

E[Rh(s3
i,a)] =

∑
a

π(a|s3
i)µ(s

3
i,a)

Var[Yn(s3
i)] =

∑
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π2(a|s3
i)

T 2
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3
i,a)

Tn(s
3
i ,a)∑

h=1

Var[Rh(s3
i,a)] =

∑
a

π2(a|s3
i)

Tn(s3
i,a)

σ2(s3
i,a).

Step 2 (Level 2): For the arbitrary state s2
i we can calculate the expec-

tation of Yn(s2
1) as follows:

E[Yn(s2
i)] =

∑
a

π(a|s2
i)
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i,a)

Tn(s
2
i ,a)∑
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i,a)]

+ γ
∑
a

π(a|s2
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∑
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j
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j |s

2
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∑
a ′
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3
j ,a ′)∑
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=
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a
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∑
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j |s

2
i,a)E[Yn(s3
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Var[Yn(s2

i)] =
∑
a

π2(a|s2
1)

T 2
n(s

2
1,a)

Tn(s
2
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∑
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∑
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2
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3
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3
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Var[Rh(s3
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=
∑
a

π2(a|s2
1)

Tn(s2
1,a)

σ2(s2
1,a) + γ2

∑
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j

P(s3
j |s

2
1,a)Var[Yn(s3

j)]


Step 3 (Level 1): Finally for the state s1

1 we can calculate the expectation
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and variance of Yn(s1
1) as follows:

E[Yn(s1
1)] =

∑
a

π(a|s1
1)

Tn(s1
1,a)

Tn(s
1
1,a)∑
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E[Rh(s1
1,a)]
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∑
s2
j

P(s2
j |s

1
1,a)
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2
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1)
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1,a) + γ

∑
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j

P(s2
j |s

1
1,a)E[Yn(s2
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Var[Yn(s1

1)] =
∑
a

π2(a|s1
1)

T 2
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1
1,a)

Tn(s
1
1,a)∑
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Var[Rh(s1
1,a)]

+ γ2
∑
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1)
∑
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j

P(s2
j |s

1
1,a)

∑
a ′

π2(a ′|s2
j)

T 2
n(s

2
j ,a ′)

Tn(s
2
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h=1

Var[Rh(s2
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=
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Tn(s1
1,a)
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1,a) + γ2
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1
1,a)Var[Yn(s2
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Unrolling out the above equation we re-write the equation below:

Var[Yn(s1
1)] =

∑
a

π2(a|s1
1)σ

2(s1
1,a)

Tn(s1
1,a) +

∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)σ

2(s2
j ,a ′)

Tn(s2
j ,a ′)

+
∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)
∑
s3
m

∑
a

′′

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)

Tn(s3
m,a ′′)

(A.28)

Since we follow a path s1
1
a→ s2

j

a ′
→ s3

m

a
′′

→ Terminate for anya,a ′,a ′′ ∈ A
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and j,m ∈ {1, 2, . . . ,A}. Hence we have the following constraints∑
a

Tn(s
1
1,a) = n (A.29)∑

a

Tn(s
2
i,a)

(a)
=

∑
a

P(s2
i|s

1
1,a)Tn(s1

1,a) (A.30)

∑
a

Tn(s
3
i,a)

(b)
=

∑
s2
j

∑
a ′

P(s3
i|s

2
j ,a ′)Tn(s

2
j ,a ′) (A.31)

observe that in (a) in the deterministic case the
∑
a P(s

2
i|s

1
1,a)Tn(s1

1,a) is all
the possible paths from s1

1 to s2
i that were taken for n samples over any ac-

tiona. Similarly in (b) in the deterministic case the
∑
a ′ P(s3

i|s
2
j ,a)Tn(s2

j ,a ′)

is all the possible paths from s2
j to s3

i that were taken for n samples over
any action a ′.

Step 4 (Formulate objective): We want to minimize the variance in
(A.28) subject to the above constraints. We can show that

Tn(s
1
1,a)/n = b(a|s1

1). (A.32)

and, b(a|s2
i) =

Tn(s
2
i,a)∑

a ′ Tn(s2
i,a ′)

=
Tn(s

2
i,a)∑

a ′ P(s2
i|s

1
1,a ′)Tn(s1

1,a ′)

=
(a)
=

Tn(s
2
i,a)/n∑
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i|s

1
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=⇒ Tn(s
2
i,a)/n

(b)
= b(a|s2

i)
∑
a ′

P(s2
i|s

1
1,a ′)b(a ′|s1

1), (A.33)

where, (a) follows from (A.30), and (b) follows from (A.32) and taking
into account all the possible paths to reach s2

i from s1
1. For the third level
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we can show that the proportion

b(a|s3
i) =

Tn(s
3
i,a)∑

a ′ Tn(s3
i,a ′)

(a)
=

Tn(s
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where, (a) follows from (A.31), and (b) follows from (A.32) and taking
into account all the possible paths to reach s3

i from s1
1. Again note that we

use b(a|s) to denote the optimization variable and b∗(a|s) to denote the
optimal sampling proportion. Then the optimization problem in (A.28)
can be restated as,

min
b

∑
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π2(a|s1
1)σ
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∑
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s.t. ∀s,
∑
a

b(a|s) = 1

∀s,a b(a|s) > 0.
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Now introducing the Lagrange multiplier we get that

L(b, λ) = min
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∑
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∑
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. (A.34)

Now we need to solve for the KKT condition. Differentiating (A.34) with
respect to b(a ′′

|s3
m), b(a

′
|s2
j), b(a|s1

1), and λs we get
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∇
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∑
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∑
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(A.35)

∇
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∑
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Now to remove λs3
m

from (A.35) we first set (A.35) to 0, define
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∑
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∑
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∑
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b2(a ′′
|s3
m)
(
P(sj2→ s3

j)
)2

=⇒ b(a
′′
|s3
m) =

√√√√ 1
λs3

m

∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)
∑
s3
m

∑
a

′′

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)(
P(sj2→ s3

j)
)2 .

(A.39)
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Then setting (A.38) to 0 we have

∑
a

′′

√√√√ 1
λs3

m

∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)
∑
s3
m

∑
a

′′

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)(
P(sj2→ s3

j)
)2 = 1

=⇒ λs3
m
=

∑
a

′′

√√√√∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)
∑
s3
m

∑
a

′′

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)(
P(sj2→ s3

j)
)2

(A.40)

Using (A.39) and (A.40) we can show that the optimal sampling propor-
tion is given by

b∗(a
′′
|s3
m) =

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)∑
a π

2(a|s3
m)σ

2(s3
m,a)

Similarly we can show that setting (A.36) and (A.38) setting to 0 and
removing λs2

j

b∗,(2)(a ′|s2
j) ∝

∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)σ

2(s2
j ,a ′)∑

a1
P(s2

j |s
1
1,a1)b∗(a1|s

1
1)

+
∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)

·
∑
s3
m

∑
a

′′

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)

b∗(a ′′
|s3
m)

(∑
s2
j

∑
a1
P(s2

j |s
1
1,a1)b

∗(a1|s
1
1)
∑
a2
P(s3

i|s
2
j ,a2)b

∗(a2|s
2
j)

b∗(a ′|s2
j)

)2
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Finally, setting (A.37) and (A.38) setting to 0 and removing λs1
1

we have

b∗,(2)(a|s1
1) ∝

∑
a

π2(a|s1
1)σ

2(s1
1,a) +

∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)σ

2(s2
j ,a ′)

b∗(a ′|s2
j)

+
∑
a

π2(a|s1
1)
∑
s2
j

∑
a ′

π2(a ′|s2
j)·

∑
s3
m

∑
a

′′

π2(a
′′
|s3
m)σ

2(s3
m,a ′′

)

b∗(a ′′
|s3
m)

(∑
s2
j

∑
a1
P(s2

j |s
1
1,a1)b

∗(a1|s
1
1)
∑
a2
P(s3

i|s
2
j ,a2)b

∗(a2|s
2
j)

b∗(a|s1
1)

)2

This shows the cyclical dependency of b∗(a|s1
1) and b∗(a|s2

j).

A.10 Additional Experimental Details

Estimate B in DAG

Recall that in a DAG G we have a cyclical dependency following Proposi-
tion 3. Hence, we do an approximation of the optimal sampling proportion
in G by using the tree formulation from Theorem 1. However, since there
are multiple paths to the same state in G we have to iteratively compute
the normalization factor B. To do this we use the following Algorithm 12.

Algorithm 12 Estimate B0(s) for G
1: Initialize BL(s) = 0 for all s ∈ S

2: for t ′ ∈ L− 1, . . . , 0 do

3: Bt ′(s) =
∑
a

√
π2(a|s)

(
σ2(s,a) + γ2

∑
s ′
P(s ′|s,a)B2

t ′+1(s)

)
4: Return B0.
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Implementation Details

In this section we state additional experimental details. We implement the
following competitive baselines:

(1) Onpolicy: The Onpolicy baseline follows the target probability
when sampling actions at each state.

(2) CB-Var: This baseline is a bandit policy which samples an action
based only on the statistics of the current state. At every time t + 1 in
episode k, CB-Var sample an action

Ikt+1 = argmax
a∈A

(2η+ 4η2)

√
2π(a|s)σ̂(2),k

t (s,a) log(SAn(n+ 1))
Tkt (s,a)

+
7 log(SAn(n+ 1))

3Tkt (s,a)

where, n is the total budget. This policy is similar to UCB-variance of
Audibert et al. (2009) and uses the empirical Bernstein inequality (Maurer
and Pontil, 2009). However we do not use the mean estimate µ̂kt (s,a) of
an action so that CB-Var explores continuously rather than maximizing
the rewards. Also note that to have a fair comparison with ReVar we use a
large constant (2η+ 4η2) and log term instead of just 2 and log t.

Ablation study

In this experiment we show an ablation study of different values of the
upper confidence bound constant associated with σ̂ukt (s,a). Recall from
(2.9) that

σ̂u
k

t (s
ℓ
i,a) := σ̂kt (sℓi,a)+2c

√
log(SAn(n+1)/δ)

Tkt (s
ℓ
i,a)

where, c is the upper confidence bound constant, and n = KL. From
Theorem 2 we know that the theoretically correct constant is to use 2η+4η2.
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Figure A.4: Ablation study of UCB constant

However, since our upper bound is loose because of union bounds over
states, actions, episodes and horizon, we ablate the value of c to see its
impact on ReVar . From Figure A.4 we see that too large a value of c = 10
and we end up doing too much exploration rather than focusing on the
state-action pair that reduces variance. However, even with too small
values of c ∈ {0, 0.1} we end up doing less exploration and have very bad
plug-in estimates of the variance. Consequently this increases the MSE of
ReVar . The value c = 1 seems to do relatively well against all the other
choices.
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A.11 Table of Notations

Notations Definition
sℓi State s in level ℓ indexed by i
π(a|sℓi) Target policy probability for action a in sℓi
b(a|sℓi) Behavior policy probability for action a in sℓi
σ2(sℓi,a) Variance of action a in sℓi
σ̂
(2),k
t (sℓi,a) Empirical variance of action a in sℓi at time t in

episode k
σ̂u

(2),k
t (sℓi,a) UCB on variance of action a in sℓi at time t in

episode k
µ(sℓi,a) Mean of action a in sℓi
µ̂kt (s

ℓ
i,a) Empirical mean of action a in sℓi at time t in

episode k
µ2(sℓi,a) Square of mean of action a in sℓi
µ̂
(2),k
t (sℓi,a) Square of empirical mean of action a in sℓi at

time t in episode k
Tn(s

ℓ
i,a) Total Samples of action a in sℓi aftern timesteps

Tn(s
ℓ
i) Total samples of actions in sℓi as

∑
a Tn(s

ℓ
i,a)

after n timesteps (State count)
Tkt (s

ℓ
i,a) Total samples of action a taken till episode k

time t in sℓi
Tkt (s

ℓ
i,a, sℓ+1

j ) Total samples of action a taken till episode k
time t in sℓi to transition to sℓ+1

j

P(sℓ+1
j |sℓi,a) Transition probability of taking action a in

state sℓi and transition to state sℓ+1
j

P̂kt (s
ℓ+1
j |sℓi,a) Empirical transition probability of taking ac-

tion a in state sℓi and moving to state sℓ+1
j at

time t episode k
P̂
(2),k
t (sℓ+1

j |sℓi,a) Empirical square of transition probability of
taking action a in state sℓi and moving to state
sℓ+1
j at time t episode k

Table A.1: Table of Notations for ReVar
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b appendix: speed: experimental design for policy
evaluation in linear heteroscedastic bandits

Probability Tools

Lemma B.1. (Kiefer and Wolfowitz, 1960) Assume that A ⊂ Rd is com-
pact and span(A) = Rd. Let π : A → [0, 1] be a distribution on A so that∑
a∈A π(a) = 1 and V(π) ∈ Rd×d and g(π) ∈ R be given by

V(π) =
∑
a∈A

π(a)aa⊤, g(π) = max
a∈A
∥a∥2

X̃(π)−1

Then the following are equivalent:

(a) π∗ is a minimizer of g.

(b) π∗ is a maximizer of f(π) = log det V(π).

(c) g (π∗) = d.

Furthermore, there exists a minimizer π∗ of g such that |Supp (π∗)| ⩽ d(d+1)/2.

Lemma B.2. (Sub-Exponential Concentration) Suppose thatX is sub-exponential
with parameters (ν,α). Then

P[X ⩾ µ+ t] ⩽

e
− t2

2ν2 if 0 ⩽ t ⩽ ν2

α

e−
t

2α if t > ν2

α

which can be equivalently written as follows:

P[X ⩾ µ+ t] ⩽ exp
{
−

1
2 min

{
t

α
, t

2

ν2

}}
.
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Lemma B.3. (Restatement of Theorem 2.2 in Rigollet and Hütter (2015))
Assume that the linear model holds where the noise ε ∼ subGn

(
σ2). Then the

least squares estimator θ̂Γ satisfies

E
[
MSE

(
Xθ̂Γ

)]
=

1
n
E
∣∣∣Xθ̂Γ − Xθ∗

∣∣∣2
2
≲ σ2 r

n

where r = rank
(
X⊤X

)
. Moreover, for any δ > 0, with probability at least 1 − δ,

it holds

MSE
(

Xθ̂Γ
)
≲ σ2 r+ log(1/δ)

n

Formulation for PE-Optimal Design to Reduce MSE

Proposition 1. Let θ̂n be the Weighted Least Square (WLS) estimate (3.1) of
θ∗ after observing n samples and define w(a) = π(a)x(a). Define the design
matrix as Ab,Σ∗ (see (3.2)). Then the loss is given by

E

( A∑
a=1

w(a)⊤(θ̂n − θ∗)

)2 =
1
n

(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)
.

Proof. Let Tn(a) ⩾ 0 be the number of samples of x(a), hencen =
∑A
a=1 Tn(a).

For each a ∈ [A], the linear model yields:

1
Tn(a)

Tn(a)∑
i=1

Ri(a) = x(a)⊤θ∗ +
1

Tn(a)

Tn(a)∑
i=1

ηi(a).

with Ri(a) being the reward observed for action a taken for the i-th time,
ηi(a) being the corresponding noise, and Tn(a) is the number of samples
of action a. We define the following:

Ỹn(a) =

Tn(a)∑
i=1

Ri(a)

σ(a)
√
Tn(a)

, x̃n(a) =
√
Tn(a)x(a)
σ(a)

, η̃n(a) =
Tn(a)∑
i=1

ηi(a)

σ(a)
√
Tn(a)
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so that for all a ∈ [A], Ỹn(a) = x̃n(a)⊤θ∗ + η̃n(a) where we can show the
following regarding the expectation of η̃n(a) as

E[η̃n(a)] = E

Tn(a)∑
i=1

ηi(a)

σ(a)
√
Tn(a)

 =

Tn(a)∑
i=1

E [ηi(a)]

σ(a)
√
Tn(a)

= 0

and the variance as

Var [η̃n(a)] = Var

Tn(a)∑
i=1

ηi(a)

σ(a)
√
Tn(a)

 (a)
=

Tn(a)∑
i=1

Var
[

ηi(a)

σ(a)
√
Tn(a)

]

=

Tn(a)∑
i=1

Var [ηi(a)]
σ2(a)Tn(a)

=
Tn(a)σ

2(a)

σ2(a)Tn(a)
= 1

where (a) follows as the noises are independent. We denote by X =(
x̃n(1)⊤, · · · , x̃n(A)⊤

)⊤ ∈ RA×d the induced design matrix of the pol-
icy. Under the assumption that X has full rank, the above weighted
least squares (WLS) problem has an optimal unbiased estimator θ̂n =(
X⊤X

)−1 X⊤Y, where

Y = [Ỹn(1), Ỹn(2), . . . , Ỹn(A)]⊤.

Let ȷ = [η̃n(1), η̃n(2), . . . , η̃n(A)]⊤. Let w(a) = π(a)x(a). Then the objec-
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tive is to bound the loss as follows

E

( A∑
a=1

w(a)⊤θ̂n −

A∑
a=1

w(a)⊤θ∗

)2 = E

( A∑
a=1

w(a)⊤(θ̂n − θ∗)

)2
= E

( A∑
a=1

w(a)⊤
((

X⊤X
)−1 X⊤Y − θ∗

))2
= E

( A∑
a=1

w(a)⊤
((

X⊤X
)−1 X⊤ (Xθ∗ + ȷ) − θ∗

))2
= E

( A∑
a=1

w(a)⊤
(
X⊤X

)−1 X⊤ȷ
)2

(a)
= E

[
Tr
(
A∑
a=1

w(a)⊤
(
X⊤X

)−1 X⊤ȷȷ⊤X
(
X⊤X

)−1
A∑
a=1

w(a)

)]

= Tr
(
A∑
a=1

w(a)⊤
(
X⊤X

)−1 X⊤E
[
ȷȷ⊤
]

X
(
X⊤X

)−1
A∑
a=1

w(a)

)
(b)
= Tr

(
A∑
a=1

w(a)⊤
(
X⊤X

)−1 X⊤IX
(
X⊤X

)−1
A∑
a=1

w(a)

)

= Tr
(
A∑
a=1

w(a)⊤
(
X⊤X

)−1
A∑
a=1

w(a)

)

= Tr

 A∑
a=1

w(a)⊤

(
A∑
a=1

x̃n(a)x̃n(a)⊤
)−1 A∑

a=1

w(a)


=

1
n

Tr

 A∑
a=1

w(a)⊤

(
A∑
a=1

b(a)x(a)x(a)⊤
σ(a)2

)−1A∑
a=1

w(a)


(c)
=

1
n

Tr

A∑
a=1

w(a)⊤

(
A∑
a=1

b(a)x̃(a)x̃(a)⊤
)−1 A∑

a=1

w(a)


=

1
n

Tr
(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)
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where, in (a)we can introduce the trace operator as for any vector x we have
Tr(x⊤x) = ∥x∥2, (b) follows as the matrix E[ȷȷ⊤] has all the non-diagonal
element as 0 (since noises are independent and Cov(ϵ̃n(a), ϵ̃n(a ′)) = 0)
and the diagonal element are the Var[ϵ̃n(a)] = 1, and (c) follows as we
redefine x̃(a) = x(a)/σ(a).

Loss is convex

Proposition 2. The loss function

Ln(π, b,Σ∗) =
1
n

(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)

for any arbitrary design proportion b ∈ △(A) and co-variance matrix Σ∗ is
strictly convex.

Proof. Let b, b ′ ∈ △(A), so that Ab and Ab ′ are invertible. Recall that we
have the loss for a design proportion b as

Ln(π, b,Σ∗) =
1
n

(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)
(a)
=

1
n

Tr
(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)

=
1
n

Tr
(

A−1
b,Σ∗

∑
a,a ′

w(a)w(a ′)⊤

)

=
1
n

Tr
(
VA−1

b,Σ∗

)
where, in (a) we can introduce the trace as the R.H.S. is a scalar quantity,
w(a) = π(a)x(a) and V =

∑
a,a ′ w(a)w(a ′)⊤. Similarly for a λ ∈ [0, 1] we

have

Ln(π, λb + (1 − λ)b ′,Σ∗) =
1
n

Tr
(

A−1
b,b ′,Σ∗

∑
a,a ′

w(a)w(a ′)⊤

)
=

1
n

Tr
(
VA−1

b,b ′,Σ∗

)
.
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Let the matrix Ab,b ′,Σ∗ be defined as

Ab,b ′,Σ∗ := λAb,Σ∗ + (1 − λ)Ab ′,Σ∗ .

Now observe that

Ab,b ′,Σ∗ = λAb,Σ∗ + (1 − λ)Ab ′,Σ∗ =

A∑
a=1

(λb(a) + (1 − λ)b ′(a)) x̃(a)x̃(a)⊤.

Also observe that this is a positive semi-definite matrix. Now using Lemma
1 from (Whittle, 1958) we can show that

(λAb,Σ∗ + (1 − λ)Ab ′,Σ∗)
−1 ≺ λA−1

b,Σ∗
+ (1 − λ)A−1

b ′,Σ∗

for any positive semi-definite matrices Ab, Ab ′ , and λ ∈ [0, 1]. Now taking
the trace on both sides we get

Tr (λAb,Σ∗ + (1 − λ)Ab ′,Σ∗)
−1 ≺ TrλA−1

b,Σ∗
+ Tr(1 − λ)A−1

b ′,Σ∗
.

Now using Lemma 2 from Whittle (1958) we can show that

Tr (λVAb,Σ∗ + (1 − λ)VAb ′,Σ∗)
−1 ≺ TrλVA−1

b,Σ∗
+ Tr(1 − λ)VA−1

b ′,Σ∗
.

for any positive semi-definite matrix V. This implies that

Ln(π, λb + (1 − λ)b ′,Σ∗) < λLn(π, b,Σ∗) + (1 − λ)Ln(π, b ′,Σ∗).

Hence, the loss function is convex.

Remark B.4. (Bound on variance) We can use singular value decomposition of
Σ∗ as Σ∗ = UDP⊤ with orthogonal matrices U, P⊤ and D = diag (λ1, . . . , λd)
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where λi denotes a singular value. Then we can bound x(a)⊤Σ∗x(a) as

∥∥x(a)⊤Σ∗x(a)
∥∥ =

∥∥x(a)⊤UDP⊤x(a)
∥∥ (a)

=
∥∥u⊤Dp

∥∥ ⩽
∥∥u⊤∥∥max

i
|λi| ∥p∥

(b)
= ∥x(a)∥max

i
|λi| ∥x(a)∥ = max

i
|λi| ∥x(a)∥2

where in (a) we have u = U
⊤x(a), p = P⊤x(a) and (b) uses the fact that∥∥∥U⊤x(a)

∥∥∥ = ∥x(a)∥ for any orthogonal matrix U⊤. Similarly we can show
that

∥∥x(a)⊤Σ∗x(a)
∥∥ ⩾ mini |λi| ∥x(a)∥2. Let H2

L ⩽ ∥x(a)∥2 ⩽ H2
U for any

a ∈ [A]. This implies that

min
i

|λi|H
2
L︸ ︷︷ ︸

σ2
min

⩽ min
i

|λi| ∥x(a)∥2 ⩽ x(a)⊤Σ∗x(a)︸ ︷︷ ︸
σ2(a)

⩽ max
i

|λi| ∥x(a)∥2 ⩽ max
i

|λi|H
2
U︸ ︷︷ ︸

σ2
max

Loss Gradient is Bounded

Proposition 3. Let b, b ′ ∈ △(A), so that Ab,Σ∗ and Ab ′,Σ∗ are invertible and
define V =

∑
a,a ′ w(a)w(a ′)⊤. Then the gradient of the loss function is bounded

such that

∥∇b(a)L(π, b,Σ∗) −∇b(a)L(π, b ′,Σ∗)∥2 ⩽ Cκ

where, the

Cκ =
λd(V)H2

U

σ2(a)
(

mina ′∈A
b(a ′)
σ(a ′)2λmin

(∑A
a=1 w(a)w(a)⊤

))2

+
λ1(V)H2

U

σ2(a)
(

mina ′∈A
b ′(a ′)
σ(a ′)2λmin

(∑A
a=1 w(a)w(a)⊤

))2 .

Proof. Let b, b ′ ∈ △(A), so that Ab,Σ∗ and Ab ′,Σ∗ are invertible. Observe
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that the gradient of the loss is given by

∇b(a)L(π, b,Σ∗) = ∇b(a)Tr
(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)
(a)

⩽ λ1(V)∇b(a)Tr(A−1
b,Σ∗

)

= −λ1(V)Tr
((

w(a)w(a)⊤

σ2(a)

)
A−2

b,Σ∗

)
= −λ1(V)

1
σ2(a)

∥∥A−1
b,Σ∗

w(a)
∥∥2

2

where, in (a) we denote V =
∑
a,a ′ w(a)w(a ′)⊤. Similarly, the gradient

of the loss is lower bounded by

∇b(a)L(π, b,Σ∗) ⩾ −λd(V)
1

σ2(a)

∥∥A−1
b,Σ∗

w(a)
∥∥2

2

which yields a bound on the gradient difference as

∥∇b(a)L(π, b,Σ∗) −∇b ′(a)L(π, b ′,Σ∗)∥2

⩽

∥∥∥∥λd(V)
1

σ2(a)

∥∥A−1
b,Σ∗

w(a)
∥∥2

2 − λ1(V)
1

σ2(a)

∥∥A−1
b ′,Σ∗

w(a)
∥∥2

2

∥∥∥∥
2

⩽

∣∣∣∣λd(V)
1

σ2(a)

∥∥A−1
b,Σ∗

w(a)
∥∥2

2

∣∣∣∣+ ∣∣∣∣λ1(V)
1

σ2(a)

∥∥A−1
b ′,Σ∗

w(a)
∥∥2

2

∣∣∣∣ .
So now we focus on the quantity

∥∥A−1
b,Σ∗

w(a)
∥∥2

2 ⩽ ∥A
−1
b,Σ∗
∥2

2∥w(a)∥2
2 ⩽ ∥A−1

b,Σ∗
∥2

2H
2
U.

Now observe that when b(a) ∈ △(A) and initialized uniform randomly,
then the optimization in (3.6) results in a non-singular A−1

b,Σ∗
if each action

has been sampled at least once which is satisfied by SPEED. So now we
need to bound the minimum eigenvalue of Ab,Σ∗

denoted as λmin(Ab,Σ∗
).
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Using Lemma 7 of Fontaine et al. (2021) we have that for all b ∈ △(A),

min
a∈[A]

b(a)
σ(a)2

A∑
a=1

w(a)w(a)⊤ ≼
A∑
a=1

b(a)
σ(a)2 w(a)w(a)⊤.

And finally

min
a∈[A]

b(a)
σ(a)2λmin

(
A∑
a=1

w(a)w(a)⊤

)
⩽ λmin(Ab,Σ∗

)

This implies that

λmin(A−1
b,Σ∗

) ⩽
1

mina∈[A]
b(a)
σ(a)2λmin

(∑A
a=1 w(a)w(a)⊤

)
Plugging everything back we get that

∥∇b(a)L(π, b,Σ∗) −∇b ′(a)L(π, b ′,Σ∗)∥2

⩽
λd(V)H2

U

σ2(a)
(

mina ′∈A
b(a ′)
σ(a ′)2λmin

(∑A
a=1 w(a)w(a)⊤

))2

+
λ1(V)H2

U

σ2(a)
(

mina ′∈A
b ′(a ′)
σ(a ′)2λmin

(∑A
a=1 w(a)w(a)⊤

))2 .

The claim of the lemma follows.

Kiefer-Wolfowitz Equivalence

We now introduce a Kiefer-Wolfowitz type equivalence (Kiefer and Wol-
fowitz, 1960) for the quantity Tr(A−1

b∗,Σ∗
) for optimal b∗ ∈ ∆(A) and co-

variance matrix Σ∗ in Proposition 4.

Proposition 4. (Kiefer-Wolfowitz for PE-Optimal ) Define the heteroscedas-
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tic design matrix as Ab,Σ∗ =
∑A
a=1 b(a)x̃(a)x̃(a)⊤. Assume that A ⊂ Rd is

compact and span(A) = Rd. Then the following are equivalent:

(a) b∗ is a minimiser of g̃(b,Σ∗) = Tr
(
A−1

b,Σ∗

)
.

(b) b∗ is a maximiser of f(b,Σ∗) = log det (Ab,Σ∗).

(c) g̃ (b∗,Σ∗) = d.

Furthermore, there exists a minimiser b∗ of g̃(b,Σ∗) such that |Supp (b∗)| ⩽

d(d+ 1)/2.

Proof. We follow the proof technique of Lattimore and Szepesvári (2020a).
Let b : A → [0, 1] be a distribution on A so that

∑
a∈A b(a) = 1 and

Ab,Σ∗ ∈ Rd×d and g(b) ∈ R be given by

Ab,Σ∗ =

A∑
a=1

b(a)π2(a)σ−2(a) x(a)x(a)⊤ =

A∑
a=1

b(a)π(a)x(a)
σ(a)

(
π(a)x(a)
σ(a)

)⊤

where, (a) follows by setting x̃(a) = x(a)/σ(a). First recall that for a
square matrix A let adj (A) be the transpose of the cofactor matrix of A.
Use the facts that the inverse of a matrix A is A−1 = adj(A)⊤/det(A) and
that if A : R→ Rd×d, then

d

dt
det(A(t)) = Tr

(
adj(A)

d

dt
A(t)

)
.

It follows then that

∇f(b,Σ∗)b(a)
(a)
=

Tr
(
adj(Ab,Σ∗)x̃(a)x̃(a ′)⊤

)
det(Ab,Σ∗)

=
x̃(a)⊤ adj(Ab,Σ∗)x̃(a ′)

det(Ab,Σ∗)

(b)
= x̃(a)⊤A−1

b,Σ∗
x̃(a ′) = g̃(b)
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where, in (a) we show the a-th component of f(b) when we differentiate
w.r.t to b(a), and (b) follows as adj(Ab,Σ∗)

det(Ab,Σ∗)
= A−1

b,Σ∗
. Also observe that

(
A∑
a=1

b(a)∥x̃(a)∥2
A−1

b,Σ∗

)
= Tr

(
A∑
a=1

b(a)x̃(a)x̃(a ′)⊤A−1
b,Σ∗

)
= d. (B.1)

Hence, maxb log det Ab,Σ∗ is lower bounded by d as in average we have
that

(∑A
a=1 b(a)∥x̃(a)∥2

A−1
b,Σ∗

)
= d.

(b) ⇒ (a): Suppose that b∗ is a maximiser of f. By the first-order
optimality criterion, for any b distribution on A,

0 ⩾ ⟨∇f (b∗,Σ∗) , b − b∗⟩

⩾

(
A∑
a=1

b(a)∥x̃(a)∥2
A−1

b∗ ,Σ∗
−

A∑
a=1

b∗(a)∥x̃(a)∥2
A−1

b∗ ,Σ∗

)

⩾

(
A∑
a=1

b(a)∥x̃(a)∥2
A−1

b∗ ,Σ∗
− d

)
.

For an arbitrary a ∈ A, choosing b to be the Dirac at a ∈ A proves that∑A
a=1 ∥x̃(a)∥2

A−1
b∗ ,Σ∗

⩽ d. Since g̃(b) ⩾ d for all b by (B.1), it follows that b∗

is a minimiser of g̃ and that minb g̃(b) = d.
(c) =⇒ (b): Suppose that g̃ (b∗) = d. Then, for any b,

⟨∇f (b∗,Σ∗) , b − b∗⟩ =

(
A∑
a=1

b(a)∥x̃(a)∥2
A−1

b∗ ,Σ∗
− d

)
⩽ 0.

And it follows that b∗ is a maximiser of f by the first-order optimality
conditions and the concavity of f. This can be shown as follows:

Let b be a Dirac at a and b(t) = b∗ + t (b∗ − b). Since b∗(a) > 0
it follows for sufficiently small t > 0 that b(t) is a distribution over A.
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Because b∗ is a minimiser of f,

0 ⩾
d

dt
f(b(t),Σ∗)

∣∣∣∣
t=0

= ⟨∇f (b∗,Σ∗) , b∗ − b⟩ = d−

A∑
a=1

∥x̃(a)∥2
A−1

b,Σ∗
.

We now show (a) =⇒ (c). To prove the second part of the theorem, let
b∗ be a minimiser of g̃, which by the previous part is a maximiser of f. Let
S = Supp (b∗), and suppose that |S| > d(d+ 1)/2. Since the dimension of
the subspace of d× d symmetric matrices is d(d+ 1)/2, there must be a
non-zero function v : A→ R with Supp(v) ⊆ S such that∑

a∈S

v(a)x̃(a)x̃(a)⊤ = 0. (B.2)

Notice that for any x̃(a) ∈ S, the first-order optimality conditions ensure
that

∑A
a=1 ∥x̃(a)∥2

A−1
b∗ ,Σ∗

= d. Hence

d
∑
a∈S

v(a) =
∑
a∈S

v(a)∥x̃(a)∥2
A−1

b∗ ,Σ∗
= 0,

where the last equality follows from (B.2). Let b(t) = b∗ + tv and let
τ = max {t > 0 : b(t) ∈ PA}, which exists since v ̸= 0 and

∑
a∈S v(a) = 0

and Supp(v) ⊆ S. By (B.2), Ab(t),Σ∗ = Ab∗,Σ∗ , and hence f(b(τ),Σ∗) =

f (b∗,Σ∗), which means that b(τ) also maximises f. The claim follows by
checking that | Supp(b(T))| < |Supp (b∗)| and then using induction.

Corollary B.5. 1 From Proposition 4 we know that b∗ is a minimizer for
Tr(A−1

b,Σ∗
) and Tr(A−1

b∗,Σ∗
) = d. This implies that the loss is bounded at b∗ as

λd(V)d
n

⩽ Ln(π, b∗,Σ∗) ⩽
λ1(V)d
n

where V =
∑
a,a ′ w(a)w(a ′)⊤.

Proof. First recall that we can rewrite the loss for any arbitrary proportion
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b and co-variance Σ∗ as

Ln(π, b,Σ∗) =
1
n

(∑
a,a ′

w(a)⊤A−1
b,Σ∗

w(a ′)

)
=

1
n

(
A−1

b,Σ∗

∑
a,a ′

w(a)w(a ′)⊤

)

=
1
n

(
A−1

b,Σ∗
V
)

.

From (Fang et al., 1994) we know that for any positive semi-definite ma-
trices A−1

b,Σ∗
and V we have that

λd(V)Tr(A−1
b,Σ∗

) ⩽ Tr(VA−1
b,Σ∗

) ⩽ λ1(V)Tr(A−1
b,Σ∗

)

where λi(V) is the i th largest eigenvalue of V. Now from Proposition 4
we know that for b∗ is a minimizer for Tr(A−1

b,Σ∗
) and Tr(A−1

b∗,Σ∗
) = d. This

implies that the loss is bounded at b∗ as

λd(V)Tr(A−1
b∗,Σ∗

) ⩽ Tr(VA−1
b∗,Σ∗

) ⩽ λ1(V)Tr(A−1
b∗,Σ∗

)

=⇒ λd(V)d

n
⩽ Ln(π, b∗,Σ∗) ⩽

λ1(V)d

n
.

The claim of the corollary follows.

Remark B.6. Note that the estimator θ̂n is an unbiased estimator of θ∗. Recall
that

θ̂n := arg min
θ

n∑
t=1

1
σ2(at)

(rt − x(at)⊤θ)2

where, at is the action sampled at timestep t. Define the

diag(Σn) = [σ2(a1),σ2(a2), . . . ,σ2(an)],

Rn = [r1, r2, . . . , rn]⊤ ∈ Rn×1 be the n rewards observed and ȷ ∈ Rn×1 is the
noise vector, where a1,a2, . . . ,an are the actions pulled at time t = 1, 2, . . . ,n.
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Then it can be shown that

E
[
θ̂n

]
− θ∗ = E

[(
X⊤
nΣ

−1
n Xn

)−1 X⊤
nΣ

−1
n Rn

]
− θ∗

= E
[(

X⊤
nΣ

−1
n Xn

)−1 X⊤
nΣ

−1
n (Xnθ∗ + ȷ)

]
− θ∗

= E
[(

X⊤
nΣ

−1
n Xn

)−1 X⊤
nΣ

−1
n Xnθ∗

]
+ E

[(
X⊤
nΣ

−1
n Xn

)−1 X⊤
nΣ

−1
n ȷ
]
− θ∗

= θ∗ +
(
X⊤
nΣ

−1
n Xn

)−1 X⊤
nΣ

−1
n E [ȷ] − θ∗

(a)
= 0

where, (a) follows as noise is zero mean.

B.1 Bandit Regret Proofs

Loss of Bandit Oracle

Proposition 5. (Bandit Oracle MSE) Let the oracle sample each action a for
⌈nb∗(a)⌉ times, where b∗ is the solution to (3.3). Define λ1(V) as the maximum
eigenvalue of V :=

∑
a,a ′ w(a)w(a ′)⊤. Then the loss satisfies

L∗
n(π, b∗,Σ∗) ⩽ Oκ2,H2

U

(
dλ1(V) logn

n

)
+Oκ2,H2

U

(
1
n

)
.

Proof. Recall the matrix Xn = [x1, x2, . . . , xn]⊤ ∈ Rn×d are the observed
features for the n samples taken. Let Rn = [r1, r2, . . . , rn]⊤ ∈ Rn×1 be the
n rewards observed and ȷ ∈ Rn×1 is the noise vector. Then using weighted
least square estimates we have

θ̂n := argmin
θ

n∑
t=1

1
σ2(at)

(rt − x(at)⊤θ)2

where, in (a) we at is the action sampled at timestep t. Recall that the
diag(Σn) = [σ2(a1),σ2(a2), . . . ,σ2(an)], where a1,a2, . . . ,an are the ac-
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tions pulled at time t = 1, 2, . . . ,n. We have that:

θ̂n − θ∗ = (X⊤
nΣ

−1
n Xn)−1X⊤

nΣ
−1
n ȷ

where the noise vector η ∼ SG(0,Σn) where Σn ∈ Rn×n. For any z ∈ Rd

we have

z⊤(θ̂n − θ∗) = z⊤(X⊤
nΣ

−1
n Xn)−1X⊤

nΣ
−1
n ȷ.

Let b∗ be the PE-Optimal design for A defined in (3.3). Then the oracle
pulls action a ∈ A exactly ⌈nb∗⌉ times for some n > d(d + 1)/2 and
computes the least square estimator θ̂n. Observe that

A∑
a=1

w(a)⊤(θ̂n − θ∗) ∼ SG

(
0,
∑
a,a ′

w(a)⊤(X⊤
nΣ

−1
n Xn)−1w(a ′)

)
.

So
(∑A

a=1 w(a)⊤(θ̂n − θ∗)
)2

∼ SE
(
0,
∑
a,a ′ w(a)⊤(X⊤

nΣ
−1
n Xn)−1w(a ′)

)
where SE denotes the sub-exponential distribution. Denote the quantity

t :=

√
2
∑
a,a ′

w(a)⊤(X⊤
nΣ

−1
n Xn)−1w(a ′) log(1/δ).

Now using sub-exponential concentration inequality in Theorem B.2, set-
ting

ν2 =
∑
a,a ′

w(a)⊤(X⊤
nΣ

−1
n Xn)−1w(a ′),
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and α = ν, we can show that

P

( A∑
a=1

w(a)⊤(θ̂n − θ∗)

)2

> t

 ⩽ δ, if t ∈ (0, 1]

P

( A∑
a=1

w(a)⊤(θ̂n − θ∗)

)2

> t2

 ⩽ δ, if t > 1.

Combining the above two we can show that

P

( A∑
a=1

w(a)⊤(θ̂n − θ∗)

)2

> min{t, t2}

 ⩽ δ,∀t > 0.

Further define matrix Σn ∈ Rd×d as Σ
−1
n := (X⊤

nΣ
−1
n Xn)−1. This means

that we have with probability (1 − δ) that

(
A∑
a=1

w(a)⊤(θ̂n − θ∗)

)2

⩽min


√

2
∑
a,a ′

w(a)⊤Σ
−1
n w(a ′) log(1/δ), 2

∑
a,a ′

w(a)⊤Σ
−1
n w(a ′) log(1/δ)


(a)
= min

{√
2
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′) log(1/δ),

2
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′) log(1/δ)
}

(b)

⩽ min
{√

8dλ1(V) log(1/δ)
n

, 8dλ1(V) log(1/δ)
n

}

and we have taken at most n pulls such that n > d(d+1)
2 pulls. Here (a)

follows as nAb∗,Σ∗
= Σn and observing that oracle has access to Σ∗, and

optimal proportion b∗. The (b) follows from applying Theorem B.5 such
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that
∑
a,a ′ w(a)⊤A−1

b∗,Σ∗
w(a ′) ⩽ dλ1(V) where V =

∑
a,a ′ w(a)w(a ′)⊤.

Thus, for any δ ∈ (0, 1) we have

P


(
A∑
a=1

x̃(a)⊤(θ̂n − θ∗)

)2

(B.3)

> min
{√

8dλ1(V) log(1/δ)
n

, 8dλ1(V) log(1/δ)
n

}})
⩽ δ. (B.4)

Define the good event ξδ(n) as follows:

ξδ(n) :=


(
A∑
a=1

x̃(a)⊤(θ̂n − θ∗)

)2

⩽ min
{√

8dλ1(V) log(1/δ)
n

, 8dλ1(V) log(1/δ)
n

} .
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Then the loss of the oracle following PE-Optimal b∗ is given by

L∗
n(π, b∗,Σ∗) = ED

( A∑
a=1

w(a)⊤
(
θ̂n − θ∗

))2
⩽ ED

( A∑
a=1

w(a)⊤
(
θ̂n − θ∗

))2

ξδ(n)


+ ED

( A∑
a=1

w(a)⊤
(
θ̂n − θ∗

))2

ξcδ(n)


(a)

⩽ ED

( A∑
a=1

w(a)⊤
(
θ̂n − θ∗

))2

ξδ(n)

+

n∑
t=1

AH2
Uκ

2P(ξcδ(n))

(b)

⩽ min
{√

8dλ1(V) log(1/δ)
n

, 8dλ1(V) log(1/δ)
n

}
+

n∑
t=1

AH2
Uκ

2P(ξcδ(n))

(c)

⩽ min
{√

16dλ1(V) logn
n

, 16dλ1(V) logn
n

}
+Oκ2,H2

U

(
1
n

)
⩽

48dλ1(V) logn
n

+Oκ2,H2
U

(
1
n

)
where, (a) follows as the noise η2 ⩽ κ2 and

∑
a ∥x(a)∥2 ⩽ AH2

U which
implies

ED

( A∑
a=1

w(a)⊤
(
θ̂n − θ∗

))2 ⩽ nAH2
Uκ

2.

The (b) follows from (B.4), and (c) follows by setting δ = 1/n3, and noting
that n > A.
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OLS-WLS Concentration Lemma

Lemma B.7. (Concentration Lemma) After Γ samples of exploration, we can
show that P (ξvarδ (Γ)) ⩾ 1 − 8δ where, C > 0 is a constant.

Proof. We observed (xt, rt) ∈ Rd × R, i = 1, . . . , Γ from the model

rt = x⊤
t θ∗ + ηt, (B.5)

ηt ∼ SG(0, x⊤
t Σ∗xt), (B.6)

where θ∗ ∈ Rd and Σ∗ ∈ Rd×d are unknown.
Given an initial estimate θ̂Γ ofθ∗, we first compute the squared residual

yt :=
(

x⊤
t θ̂Γ − rt

)2
, and then obtain an estimate of Σ∗ via

min
S∈Rd×d

Γ∑
t=1

(〈
xtx⊤

t , S
〉
− yt

)2 . (B.7)

Observe that if θ̂Γ = θ∗, then the expectation of the squared residual yt is

E [yt] = E
[(

x⊤
t θ∗ − rt

)2
]
= E

[
η2
t

]
= x⊤

t Σ∗xt =
〈
xtx⊤

t ,Σ∗
〉

,

which is a linear function of Σ∗. The program (B.7) is thus a least square
formulation for estimating Σ∗.

Let Xt := xtx⊤
t . Below we abuse notation and view Σ∗, Σ̂Γ , Xt, S as

vectors in Rd2 endowed with the trace inner product ⟨·, ·⟩. Let X ∈ RΓ×d2

have rows {Xt} , and y = (y1, . . . ,yΓ )⊤ ∈ RΓ . Suppose xt can only take
on M possible values from {ϕ1, . . . ,ϕM} , so Xt ∈ {Φ1, . . . ,ΦM}, where
Φm := ϕmϕ

⊤
m. Note that for the forced exploration setting we haveM =

d < A. Moreover, each value appears exactly Γ/M times. Then (B.7) can
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be rewritten as

min
S∈Rd2

M∑
m=1

∑
t:Xt=Φm

(⟨Φm, S⟩− yt)2
= min

S∈Rd2

M∑
m=1

(
⟨Φm, S⟩− 1

Γ/M

∑
t:Xt=Φm

yt

)2

.

Let zm := 1
Γ/M

∑
t:Xt=Φm yt. Then it becomes

min
S∈Rd2

M∑
m=1

(⟨Φm, S⟩− zm)2
= min

S∈Rd2
∥ΦS − z∥2

2 ,

where Φ ∈ Rm×d2 has rows {Φm} , and z := (z1, . . . , zm)⊤ ∈ R/M. Note
that {Φm}may or may not spanRd2 . Observe that Σ̂Γ be an optimal solution
to the above problem. Then∥∥∥Φ(Σ̂Γ − Σ∗)

∥∥∥2

2
+ ∥ΦΣ∗ − z∥2

2 + 2
〈
Φ(Σ̂Γ − Σ∗),ΦΣ∗ − z

〉
=
∥∥∥ΦΣ̂Γ −ΦΣ∗ +ΦΣ∗ − z

∥∥∥2

2

=
∥∥∥ΦΣ̂Γ − z

∥∥∥2

2
⩽ ∥ΦΣ∗ − z∥2

2 .

Hence, we can show that∥∥∥Φ(Σ̂Γ − Σ∗)
∥∥∥2

2
⩽ −2

〈
Φ(Σ̂Γ − Σ∗),ΦΣ∗ − z

〉
(a)

⩽ 2
∥∥∥Φ(Σ̂Γ − Σ∗)

∥∥∥
2
∥ΦΣ∗ − z∥2 .

where, (a) follows from Cauchy Schwarz inequality. So∥∥∥Φ(Σ̂Γ − Σ∗)
∥∥∥

2
⩽ 2 ∥ΦΣ∗ − z∥2 .

Observe that the RHS does not contain the Σ̂Γ anymore. Note that the



324

m-th entry of ΦΣ∗ − z is

⟨Φm,Σ∗⟩− zm = ϕ⊤
mΣ∗ϕm −

1
Γ/M

∑
t:Xt=Φm

yt.

Let ζΓ := θ̂Γ −θ∗ where θ̂Γ is the estimation of θ∗ after Γ =
√
n rounds

of exploration. The noise ηt is σ2
t sub-Gaussian. Then

yt =
(

x⊤
t θ̂t − rt

)2

= (ηt + x⊤
t ζΓ )

2

= η2
t + 2ηtx⊤

t ζΓ +
(
x⊤
t ζΓ

)2

= x⊤
t Σ∗xt + ϵt = ⟨Σ∗, xtx⊤

t ⟩+ ϵt
(a)
= ⟨θ̃∗, zt⟩+ ϵt

where, in (a) we denote the θ̃∗ ∈ Rd2 as the vector reshaping Σ∗ and
zt ∈ Rd2 is the vector reshaping xtx⊤

t . This shows that the feedback yt is
linear. Now we need to show that ϵt is sub-exponential. We proceed as
follows: We have that

ϵt := yt − x⊤
t Σ∗xt = η2

t − E[η2
t]︸ ︷︷ ︸

Part A

+ 2ηtx⊤
t ζΓ︸ ︷︷ ︸

Part B

+
(
x⊤
t ζΓ

)2︸ ︷︷ ︸
Part C

The goal is to prove that P(ϵt > E[ϵt] + s) ⩽ exp(−s/2σ2
max) for some

s ∈ R.
For part A, we know that the η2

t is a sub-exponential random variable
with η2

t ∼ SE(ν,α) where ν = 4σ2
t

√
2,α = 4σ2

t, and σ2
t = x⊤

t Σ∗xt. This
follows from Equation 37 in Appendix B of Honorio and Jaakkola (2014).
It shows that if X is a centered sub-Gaussian random variable with sub-
Gaussian parameter σ2 then X2 is sub-exponential with parameters ν =

4σ2
√

2,α = 4σ2.
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From Theorem B.2 we know that

P
(
η2
t ⩾ E[η2

t] + 8σ2
t log(A/δ)

)
⩽ exp

(
−

1
2 min

{
8σ2
t log(A/δ)

4σ2
t

, 64σ4
t log2(A/δ)

32σ4
t

})
= exp (− log(A/δ)) .

Hence, η2
t ⩽ 4σ2

t

√
2 + 8σ2

t log(A/δ) ⩽ 16σ2
max log(A/δ) with probability

(1 − δ) as E[η2
t] = ν. Equivalently we can write that

P
(
η2
t ⩾ E[η2

t] + 16σ2
t log(A/δ)

)
⩽ exp

(
−

s2
1

16σ2
max

)
= exp

(
−

s2
1

2c ′σ2
max

)
.

(B.8)

where s1 =
√

2c ′σ2
max log(A/δ) and c ′ > 0 is a constant.

For part C we proceed as follows:

(x⊤
t (θ̂Γ − θ∗))

2 ⩽ (x⊤x)∥θ̂Γ − θ∗∥2 ⩽ (x⊤x)MSE(X(θ̂Γ − θ∗))

λmin

⩽
H2
U

λminΓ

(
8 log(6)σ2

maxr+ 8σ2
max log(1/δ)

)
⩽

2c ′′
σ2

maxd
2 log(A/δ)
Γ

The first inequality follows by Cauchy Schwarz and the second by Remark
2.3 of Rigollet and Hütter (2015). Therefore it follows that

P
(
(x⊤
t (θ̂Γ − θ∗))

2 ⩾
2c ′′
σ2

maxd
2 log(A/δ)
Γ

)
⩽ δ.

Assuming Γ > d2 we can also show that

P
(
(x⊤
t (θ̂Γ − θ∗))

2 ⩾ 2c ′′
σ2

max log(A/δ)
)
⩽ δ
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which drops the dependence on Γ and d. Equivalently we can write that

P
(
(x⊤
t (θ̂Γ − θ∗))

2 ⩾ 2c ′′
σ2

max log(A/δ)
)
⩽ exp

(
−

s2
3

2c ′′
σ2

max

)
. (B.9)

where s3 =
√

2c ′′
σ2

max log(A/δ).
For part B we proceed as follows:

2 ηt︸︷︷︸
a

x⊤
t

(
θ̂Γ − θ∗

)
︸ ︷︷ ︸

b

(a)

⩽ 2η2
t +

1
2

(
x⊤
t

(
θ̂Γ − θ∗

))2

where, (a) follows as 2ab ⩽ 2a2 + 1
2b

2. It follows then that

P
(

2ηtx⊤
t

(
θ̂Γ − θ∗

)
⩾ s2

1 + s
3
3

)
(a)

⩽ P
(

2η2
t +

1
2(x

⊤
t

(
θ̂Γ − θ∗

)
)2 > s2

1 + s
2
3

)
⩽ P

(
2η2
t > s

2
1 + s

2
3
)
+ P

(
1
2(x

⊤
t

(
θ̂Γ − θ∗

)
)2 > s2

1 + s
2
3

)
= P

(
η2
t >

s2
1 + s

2
3

2

)
+ P

(
(x⊤
t

(
θ̂Γ − θ∗

)
)2 > 2(s2

1 + s
2
3)
)

(b)

⩽ P
(
η2
t >

s2
1 + s

2
3

2

)
+ P

(
(x⊤
t

(
θ̂Γ − θ∗

)
)2 >

s2
1 + s

2
3

2

)
(c)

⩽ P
(
η2
t >

s2
1

2

)
+ P

(
(x⊤
t

(
θ̂Γ − θ∗

)
)2 >

s2
3

2

)
(d)

⩽ exp
(
−

s2
1

c ′σ2
max

)
+ exp

(
−

s2
3

c
′′
σ2

max

)

where, (a) follows as LHS 2η2
t +

1
2(x

⊤
t

(
θ̂Γ − θ∗

)
)2 > 2ηtx⊤

t

(
θ̂Γ − θ∗

)
(that is LHS is larger). The (b) follows as RHS s2

1+s
2
3

2 < 2(s2
1 + s

2
3) and (c)

follows as RHS s2
1+s

2
3

2 <
s2

1
2 (that is RHS is smaller). The (d) follows from

(B.8), and (B.9).
We now estimate the expectation of ϵt. Observe that for Γ > d2 we
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have that

Eη,ζ[ϵt] = Eη,ζ

[
η2
t − Eη[η2

t] + 2ηtx⊤
t ζΓ +

(
x⊤
t ζΓ

)2
]

= Eη[η2
t] − Eη,ζ[Eη[η2

t]] + 2Eη,ζ[ηtx⊤
t ζΓ ] + Eζ[

(
x⊤
t ζΓ

)2
]

⩾ 2Eη,ζ[ηtx⊤
t ζΓ ] + Eζ[

(
x⊤
t ζΓ

)2
] ⩾

σ2
maxd

Γ
.

Similarly we can get an upper bound to E[ϵt] for Γ > d2 as follows:

Eη,ζ[ϵt] = Eη,ζ

[
η2
t − Eη[η2

t] + 2ηtx⊤
t ζΓ +

(
x⊤
t ζΓ

)2
]

(a)

⩽ 2Eη[η2
t] +

1
2Eζ[

(
x⊤
t ζΓ

)2
] + Eζ[

(
x⊤
t ζΓ

)2
]

⩽ 2Eη[η2
t] +

2c ′′
σ2

maxd
2 log(A/δ)
Γ

(b)

⩽ 16σ2
max +

2c ′′
σ2

maxd
2 log(A/δ)
Γ

where, (a) follows for 2ab ⩽ 2a2 + 1
2b

2, (b) follows as E[η2
t] = ν ⩽ 8σ2

max.
Define s2 = (s2

1 + s
2
3). Then combining Part A, B and C it follows that

P(ϵt ⩾ s2) = P(η2
t + 2ηtx⊤

t ζΓ +
(
x⊤
t ζΓ

)2
⩾ s2)

⩽ P(η2
t ⩾ s

2) + P(2ηtx⊤
t ζΓ ⩾ s

2) + P(
(
x⊤
t ζΓ

)2
⩾ s2)

(a)

⩽ P(η2
t ⩾ s

2
1) + P(2ηtx⊤

t ζΓ ⩾ s
2
1 + s

2
3) + P(

(
x⊤
t ζΓ

)2
⩾ s2

3)

⩽ 2 exp
(
−

s2
1

c ′σ2
max

)
+ 2 exp

(
−

s2
3

c
′′
σ2

max

)
(B.10)

where (a) follows as RHS s2
1 < s

2, and s2
3 < s

2 (that is the RHS is smaller).
Let there be some constant C > 0 such that s2/C < max{s2

1/c
′, s2

3/c
′′}.

Then it follows that

P(ϵt ⩾ E[ϵt] + s2)
(a)

⩽ P
(
ϵt ⩾

σ2
maxd

Γ
+ s2

)
⩽ P(ϵt ⩾ s2) ⩽ 4 exp

(
−

s2

Cσ2
max

)
.

where, (a) as the RHS E[ϵt] ⩾ σ2
maxd
Γ

is smaller. This shows that ϵt is a sub-
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exponential random variable using Theorem B.2. Then using Theorem B.2
and Γ > d2 we can show that

P
(
ϵt ⩾ E[ϵt] +

Cd2σ2
max log(A/δ)
Γ

)
⩽ 4 exp

(
−
Cd2σ2

max log(A/δ)
CΓσ2

max

)
⩽ 4 δ

A
.

This implies that ϵt ⩽ E[ϵt]+
Cd2σ2

max log(A/δ)
Γ

⩽ 16σ2
max+

2Cd2σ2
max log(A/δ)
Γ

with probability greater than 1 − 4 δ
A

.
Combining all of the steps above we can show that

P

(
⟨Φm,Σ∗⟩− zm >

d√
n

∑
t:Xt=Φm

(
16σ2

max +
2Cd2σ2

max log(A/δ)
Γ

))
(a)
= P

(
⟨Φm,Σ∗⟩− zm >

(
16σ2

max +
2Cd2σ2

max log(A/δ)
Γ

))
(b)

⩽ P
(
⟨Φm,Σ∗⟩− zm >

2Cd2σ2
max log(A/δ)
Γ

)
⩽ 4δ/A,

where, (a) follows by setting Γ =
√
n andM = d < A and noting that the

m-th row consist of
√
n/d entries. The (b) follows as the Hence the above

implies that

P
(

x(a)⊤Σ̂Γx(a) − x(a)⊤Σ∗x(a) ⩾ 2Cd2σ2
max log(A/δ)
Γ

)
⩽ 4δ/A.

Similarly, we can bound the other tail inequality as

P
(

x(a)⊤Σ̂Γx(a) − x(a)⊤Σ∗x(a) ⩽ −
2Cd2σ2

max log(A/δ)
Γ

)
⩽ 4δ/A.

Hence we can show by union bounding over all actions A > d that

P
(
∀a,
∣∣∣x(a)⊤ (Σ̂Γ − Σ∗

)
x(a)

∣∣∣ ⩾ 2Cd2σ2
max log(A/δ)
Γ

)
⩽ 2A4δ

A
= 8δ.



329

The claim of the lemma follows.

Lemma B.8. (Operator Norm Concentration Lemma) We have that

P
(
∥Σ̂Γ − Σ∗∥ ⩾

2Cd2σ2
maxλ

−1
min(Y) log(A/δ)
Γ

)
⩽ 8δ

for a constant C > 0.

Proof. Define the set of actions Z such that it has a span over X and XX⊤.
Define the vector y(a) = x(a)x(a)⊤ ∈ Rd2 . Also observe that |Z| = d2.
Without loss of generosity, we assume that Z = {1, 2, . . . ,d2}. Now define
the matrix Y ∈ Rd2×d2 such that

Y = [y(1), y(2), . . . , y(|Z|)]

We further assume that the λmin(Y) > 0. We already have from Theo-
rem A.4 that

P
(
∀a ∈ A,

∣∣∣x(a)⊤(Σ̂Γ − Σ∗)x(a)
∣∣∣ ⩽ 2Cd2σ2

max log(A/δ)
Γ

)
⩾ 1 − 8δ

(a)
=⇒ P

(
∀a ∈ Z,

∣∣∣⟨Σ̂Γ , y(a)⟩− ⟨Σ∗, y(a)⟩
∣∣∣ ⩽ 2Cd2σ2

max log(A/δ)
Γ

)
⩾ 1 − 8δ.

where, (a) follows by the fact that Z ⊂ A. Now take an arbitrary vector x
in unit ball such that ∥x∥2 ⩽ 1. Now we define the vector y = xx⊤ such
that y ∈ Rd2 . Then following Assumption 4 we have that

xx⊤ = y =
∑
a∈Z

α(a)y(a) = αY (a)
=⇒ α = Y−1y

where, in (a) we can take the inverse because λmin(Y) > 0. Now we want
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to bound

∥Σ̂Γ − Σ∗∥ =
∣∣∣x⊤

(
Σ̂Γ − Σ∗

)
x
∣∣∣ = ∣∣∣⟨Σ̂Γ − Σ∗, y⟩

∣∣∣
⩽

2Cd2σ2
max log(A/δ)
Γ

∥∥∥∥∥∥∥∥∥
∑
a

α(a)︸ ︷︷ ︸
α

∥∥∥∥∥∥∥∥∥
=

2Cd2σ2
max log(A/δ)
Γ

∥Y−1y∥

⩽
2Cd2σ2

max log(A/δ)
Γ

∥Y−1∥∥x∥2

⩽
2Cd2σ2

maxλ
−1
min(Y) log(A/δ)
Γ

.

The claim of the lemma follows.

Corollary B.9. For, n ⩾ 4C2d2σ2
max log2(A/δ)/σ2

min, we have that with prob-

ability at least 1 − 8δ, the following holds: for all action a, σ
2(a)

σ̂2
Γ (a)

⩽ 1 +

4Cd2σ2
max log(A/δ)
σ2

minΓ
.

Proof. From the Theorem A.4, we know that
∣∣∣x(a)⊤(Σ̂Γ − Σ∗)x(a)

∣∣∣ ⩽ 2Cd2 log(A/δ)
Γ

with probability at least 1 − 8δ. Hence we can show that

|σ̂2
Γ (a) − σ

2(a)| ⩽
2Cd2σ2

max log(A/δ)
Γ

=⇒ σ2(a) −
2Cd2σ2

max log(A/δ)
Γ

⩽ σ̂2
Γ (a) ⩽ σ

2(a) +
2Cd2σ2

max log(A/δ)
Γ

=⇒ 1 −
2Cd2σ2

max log(A/δ)
σ2(a)Γ

⩽
σ̂2
Γ (a)

σ2(a)
⩽ 1 +

2Cd2σ2
max log(A/δ)
σ2(a)Γ

=⇒ 1 −
2Cd2σ2

max log(A/δ)
σ2

minΓ
⩽
σ̂2
Γ (a)

σ2(a)
⩽ 1 +

2Cd2σ2
maxσ

2
max log(A/δ)

σ2
minΓ

=⇒ 1
1 +

2Cd2σ2
max log(A/δ)
σ2

minΓ

⩽
σ2(a)

σ̂2
Γ (a)

⩽
1

1 −
2Cd2σ2

max log(A/δ)
σ2

minΓ

.
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It follows then that

σ2(a)

σ̂2
Γ (a)

⩽
1

1 −
2Cd2σ2

max log(A/δ)
σ2

minΓ

(a)

⩽ 1 +
4Cd2σ2

max log(A/δ)
σ2

minΓ

where, (a) follows for x = 2Cd2σ2
max log(A/δ)
σ2

minΓ
and

1
1 − x

⩽ 1 + 2x =⇒ 1 ⩽ 1 + x− 2x2 =⇒ x(1 − 2x) ⩾ 0

which holds for x = 2Cd2σ2
max log(A/δ)
σ2

minΓ
⩽ 1

2 . Forn ⩾ 4C2d2σ2
max log2(A/δ)/σ2

min

we can show that x ⩽ 1
2 . The claim of the corollary follows.

Bounding the Loss of Algorithm 2

Proposition 6. (Loss of Algorithm 2, formal) Let b̂ be the empirical PE-
Optimal design followed by Algorithm 2 and it samples each action a as ⌈nb̂(a)⌉
times. Then the MSE of Algorithm 2 for for n ⩾ 2Cd2σ2

max log(A/δ)
σ2

minΓ
is given by

Ln(π, b̂, Σ̂Γ ) ⩽ Oκ2,H2
U

(
d3λ1(V) logn

σ2
minn

)
︸ ︷︷ ︸

PE-Optimal MSE
and exploration error

+Oκ2,H2
U

(
d2λ1(V) logn

n3/2

)
︸ ︷︷ ︸

Approximation error

+Oκ2,H2
U

(
1
n

)
︸ ︷︷ ︸
Failure event MSE

.

Proof. Recall that the Σ̂Γ be the empirical co-variance after Γ timesteps.
Then Algorithm 2 pulls each action a ∈ A exactly

⌈
(n− Γ)b̂(a)

⌉
times for

some
√
n > A and computes the least squares estimator θ̂n. Recall that

the estimate θ̂n only uses the (n− Γ) data sampled under b̂. Also recall
we actually use Σ̂Γ as input for optimization problem (3.3), where Γ =

√
n.
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We first define the good event ξδ(n− Γ) as follows:

ξδ(n− Γ) :=

{( A∑
a=1

w(a)⊤(θ̂n−Γ − θ∗)

)2

⩽ min
{√

(8dλ1(V) + α0 + α) log(1/δ)
n− Γ

,

(8dλ1(V) + α0 + α) log(1/δ)
n− Γ

}}
where, α0, and α will be defined later. Also, define the good variance
event as follows:

ξvarδ (Γ) :=

{
∀a,
∣∣∣x(a)⊤ (Σ̂Γ − Σ∗

)
x(a)

∣∣∣ < 2Cd2σ2
max log(A/δ)
Γ

}
. (B.11)

Then we can bound the loss of the SPEED as follows:

Ln(π, b̂, Σ̂Γ ) = ED

( A∑
a=1

w(a)⊤
(
θ̂n−Γ − θ∗

))2
= ED

( A∑
a=1

w(a)⊤
(
θ̂n−Γ − θ∗

))2

I{ξδ(n− Γ)}I{ξvarδ (Γ)}


+ ED

( A∑
a=1

w(a)⊤
(
θ̂n−Γ − θ∗

))2

I{ξcδ(n− Γ)}


+ ED

( A∑
a=1

w(a)⊤
(
θ̂n−Γ − θ∗

))2

I{(ξvarδ (Γ))c}

 . (B.12)

Now we bound the first term of the (B.12). Note that using weighted least
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square estimates we have

θ̂n−Γ
(a)
= θ̂n := argmin

θ

n∑
t=Γ+1

1
σ2(at)

(rt − x(at)⊤θ)2

where, in (a) we at is the action sampled at timestep t. Recall that the
diag(Σ̂Γ ) = [σ̂2

Γ (a1), σ̂2
Γ (a2), . . . , σ̂2

Γ (an)], where a1,a2, . . . ,an−Γ are the ac-
tions pulled at time t = Γ + 1, 2, . . . ,n. We have that:

θ̂n−Γ = (X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ Rn

= (X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ (Xn−Γθ∗ + η)

θ̂n−Γ − θ∗ = (X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ ȷ

where the noise vectorη ∼ SG(0,Σn−Γ )where diag(Σn) = [σ2(a1),σ2(a2), . . . ,σ2(an−Γ )].
For any z :=

∑
aw(a) ∈ Rd we have

z⊤(θ̂n−Γ − θ∗) = z⊤(X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ ȷ. (B.13)

It implies from (B.13) that(
z⊤(θ̂n−Γ − θ∗)

)2

∼ SE
(

0, z⊤(X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ E

[
ȷȷ⊤
]
Σ̂−1
Γ Xn−Γ (X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1z

)
(B.14)

where SE denotes the sub-exponential distribution. Hence to bound the
quantity

(
z⊤(θ̂n−Γ − θ∗)

)2
we need to bound the variance. We first begin
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by rewriting the loss function for n ⩾ 2Cd2σ2
max log(A/δ)
σ2

minΓ
as follows

E
[(

z⊤(θ̂n−Γ − θ∗)
)2
]

= z⊤(X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ E

[
ȷȷ⊤
]
Σ̂−1
Γ Xn−Γ (X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1z

(a)
= z⊤(X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1
Γ ΣnΣ̂

−1
Γ Xn−Γ (X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1z

= z⊤(X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
− 1

2
Γ Σ̂

− 1
2

Γ ΣnΣ̂
− 1

2
Γ Σ̂

− 1
2

Γ Xn−Γ (X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1z

(b)
= z⊤(X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
− 1

2
Γ︸ ︷︷ ︸

m⊤∈Rn−Γ

Σ̂
− 1

2
Γ ΣnΣ̂

− 1
2

Γ Σ̂
− 1

2
Γ Xn−Γ (X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1z︸ ︷︷ ︸

m∈Rn−Γ

(c)

⩽ z⊤(X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1X⊤

n−Γ Σ̂
−1/2
Γ

((
1 + 2CΓ ,σ2

min
(δ)
)

In
)
·

Σ̂
−1/2
Γ Xn−Γ (X⊤

n−Γ Σ̂
−1
Γ Xn−Γ )−1z

(d)
=
(

1 + 2CΓ ,σ2
min
(δ)
)

z⊤(X⊤
n−Γ Σ̂

−1
Γ Xn−Γ )−1z (B.15)

where, (a) follows as E
[
ȷȷ⊤
]
= Σn, in (b) m is a vector in Rn−Γ . The (c)

follows by first observing that

Σ̂
− 1

2
Γ ΣnΣ̂

− 1
2

Γ = Σ̂−1
Γ Σn = diag(Σ̂−1

Γ Σn) =

[
σ2(I1)

σ̂2
Γ (I1)

, σ
2(I2)

σ̂2
Γ (I2)

, . . . , σ
2(In)

σ̂2
Γ (In)

]
.

Then note that using Theorem B.9 we have

σ2(It)

σ̂2
Γ (It)

⩽ 1 + 2 · 2Cd2σ2
max log(A/δ)
σ2

minΓ︸ ︷︷ ︸
:= CΓ ,σ2

min
(δ)

for each t ∈ [n], and (d) follows as 1+ 2CΓ ,σ2
min
(δ) is not a random variable.

Let b̂∗ be the empirical PE-Optimal design returned by the approximator
after it is supplied with Σ̂Γ . Now observe that the quantity of the samples
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collected (following b̂∗) after exploration is as follows:

(
X̃⊤
n−Γ Σ̂

−1
Γ X̃n−Γ

)−1
=

(∑
a

⌈
(n− Γ)b̂∗(a)σ̂−2

Γ (a)
⌉

w(a)w(a)⊤

)−1

=
1

n− Γ
A−1
b̂∗,Σ̂Γ

.

Hence we use the loss function

L ′
n−Γ (π, b̂, Σ̂Γ ) :=

(
1 + 2CΓ ,σ2

min
(δ)
)

z⊤(X̃⊤
n−Γ Σ̂

−1
Γ X̃n−Γ )−1z

=

(
1 + 2CΓ ,σ2

min
(δ)
)

n− Γ

∑
a,a ′

w(a)⊤A−1
b̂∗,Σ̂Γ

w(a ′). (B.16)

Also recall that we define

Ln(π, b∗, Σ̂Γ ) =
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′).

So to minimize the quantity E
[(∑

aw(a)⊤(θ̂n−Γ − θ∗)
)2
]

is minimiz-

ing the quantity

(
1+2C

Γ ,σ2
min

(δ)

)
n−Γ

∑
a,a ′ w(a)⊤A−1

b̂∗,Σ̂Γ
w(a ′). Further recall

that we can show that from Assumption 5 (approximation oracle) and
Kiefer-Wolfowitz theorem in Theorem B.5 that for the proportion b∗ and
any arbitrary positive semi-definite matrix Σ̂Γ the following holds

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′) = Tr
(∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

)

= Tr
(

A−1
b∗,Σ̂Γ

∑
a,a ′

w(a)w(a ′)⊤︸ ︷︷ ︸
V

)

= Tr
(

A−1
b∗,Σ̂Γ

V
)
⩽ dλ1(V). (B.17)
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Then we can decompose the loss as follows:

L ′
n−Γ (π, b̂, Σ̂Γ ) = L ′

n−Γ (π, b̂, Σ̂Γ ) − L ′
n−Γ (π, b̂∗, Σ̂Γ ) + L ′

n−Γ (π, b̂∗, Σ̂Γ )

= L ′
n−Γ (π, b̂, Σ̂Γ ) − L ′

n−Γ (π, b̂∗, Σ̂Γ )︸ ︷︷ ︸
Approximation error

+L ′
n−Γ (π, b̂∗, Σ̂Γ ) − Ln(π, b∗, Σ̂Γ )︸ ︷︷ ︸

Comparing two diff loss

+ Ln(π, b∗, Σ̂Γ ). (B.18)

For the approximation error we need access to an oracle (see Assumption 5)
that gives ϵ approximation error. Then setting ϵ = 1√

n
we have that

L ′
n−Γ (π, b̂, Σ̂Γ ) − L ′

n−Γ (π, b̂∗, Σ̂Γ ) (B.19)

=

(
1 + 2CΓ ,σ2

min
(δ)
)

n− Γ
Tr
(∑
a,a ′

w(a)⊤A−1
b̂,Σ̂Γ

w(a ′) −
∑
a,a ′

w(a)⊤A−1
b̂∗,Σ̂Γ

w(a ′)

)
︸ ︷︷ ︸

ϵ

(a)

⩽ Oκ2,H2
U

(
d2σ2

max log(A/δ)
n3/2

)
(B.20)

where, (a) follows by setting Γ =
√
n, ϵ = 1/

√
n andCΓ ,σ2

min
(δ) =

2Cd2σ2
max log(A/δ)
σ2

minΓ
=

2Cd2σ2
max log(A/δ)
σ2

min
√
n

. Let us define K1 := Tr(
∑
a,a ′ w(a)⊤A−1

b̂∗,Σ̂Γ
w(a ′)), and

K2 := Tr(w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)). For the second part of comparing the two
losses we can show that
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L ′
n−Γ (π, b̂∗, Σ̂Γ ) − Ln(π, b∗, Σ̂Γ )

=
1

(n− Γ)
Tr
((

1 + 2CΓ ,σ2
min
(δ)
)
K1

)
−

1
n
K2

=
(1 + 2CΓ ,σ2

min
(δ))K1

n− Γ
−

(1 + 2CΓ ,σ2
min
(δ))K2

n− Γ
+

(1 + 2CΓ ,σ2
min
(δ))K2

n− Γ
−

1
n

K2

=
(1 + 2CΓ ,σ2

min
(δ))

n− Γ
(K1 − K2) +

2CΓ ,σ2
min
(δ)K2

n− Γ
+

1
n− Γ

K2 −
1
n

K2

(a)
=

Γ

n(n− Γ)
Tr
(∑
a,a ′

w(a)⊤A−1
b̂∗,Σ̂Γ

w(a ′) −
∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

)
︸ ︷︷ ︸

⩽0

+
2CΓ ,σ2

min
(δ)

n− Γ
Tr
(∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

)
(B.21)

+
Γ

n(n− Γ)
Tr
(∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

)
(b)

⩽ Oκ2,H2
U

(
d3σ2

maxλ1(V) log(A/δ)
σ2

minn
3/2

)
(B.22)

where, (a) follows by substituting the definition of K1 and K2. The (b)

follows by setting Γ =
√
n, CΓ ,σ2

min
(δ) =

2Cd2σ2
max log(A/δ)
σ2

minΓ
=

2Cd2σ2
max log(A/δ)
σ2

min
√
n

,

and Tr
(∑

a,a ′ w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)
)
⩽ dλ1(V).

Now we combine all parts together in (B.18) using (B.17), (B.20) and
(B.22). First we define the quantity

α := 2CΓ ,σ2
min
(δ)Tr

(∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

)
+
Γ

n
Tr
(∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

)
.
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It follows then that (B.18) can be written as

1 + 2CΓ ,σ2
min
(δ)

n− Γ

∑
a,a ′

w(a)⊤A−1
b̂,Σ̂Γ

w(a ′)

⩽
(1 + 2CΓ (δ))ϵ

(n− Γ)︸ ︷︷ ︸
Approximation error

+
α

n− Γ
+

1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

=⇒ (1 + 2CΓ ,σ2
min
(δ))

∑
a,a ′

w(a)⊤A−1
b̂,Σ̂Γ

w(a ′)

⩽ (1 + 2CΓ (δ))ϵ︸ ︷︷ ︸
α0

+α+
n− Γ

n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′)

(a)

⩽ α0 + α+ dλ1(V) (B.23)

where, (a) follows from Assumption 5, Theorem B.5 and (B.17). Also
observe that from (B.14) we have that

(∑A
a=1 w(a)⊤(θ̂n − θ∗)

)2 is a sub-
exponential random variable. Then using the sub-exponential concentra-
tion inequality we have with probability at least 1 − δ
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(
A∑
a=1

w(a)⊤(θ̂n−Γ − θ∗)

)2

⩽ min
{√

(1 + 2CΓ ,σ2
min
(δ))

∑
a,a ′

w(a)
(

X⊤
n−Γ Σ̂

−1
Γ Xn−Γ

)−1
w(a ′)2 log(1/δ),

(1 + 2CΓ (δ))
∑
a,a ′

w(a)⊤
(

X⊤
n−Γ Σ̂

−1
Γ Xn−Γ

)−1
w(a ′)2 log(1/δ)

}
= min

{
1√
n− Γ

√
(1 + 2CΓ ,σ2

min
(δ))

∑
a,a ′

w(a)⊤A−1
b,Σ̂Γ

w(a ′)2 log(1/δ),

(1 + 2CΓ ,σ2
min
(δ))

n− Γ

∑
a,a ′

w(a)⊤A−1
b,Σ̂Γ

w(a ′)2 log(1/δ)
}

(a)

⩽ min
{√

(8dλ1(V) + α0 + α) log(1/δ)
n− Γ

, (8dλ1(V) + α0 + α) log(1/δ)
n− Γ

}

where, (a) follows from (B.23), and we have taken at most n− Γ pulls to
estimate θ̂n after forced exploration and

√
n > d. Thus, for any δ ∈ (0, 1)

we have

P
({( A∑

a=1

w(a)⊤(θ̂n − θ∗)

)2

> min
{√

(8dλ1(V) + α0 + α) log(1/δ)
n− Γ

,

(8dλ1(V) + α0 + α) log(1/δ)
n− Γ

}})
⩽ δ. (B.24)

This gives us a bound on the first term of (B.12). Combining everything
in (B.12) we can bound the loss of the SPEED as follows:
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Ln(π, b̂, Σ̂Γ ) ⩽ ED

( A∑
a=1

w(a)⊤
(
θ̂n−Γ − θ∗

))2

I{ξδ(n− Γ)}I{ξvarδ (Γ)}


+

n∑
t=1

AH2
Uη

2P(ξcδ(n− Γ)) +

n∑
t=1

AH2
Uη

2P ((ξvarδ (Γ))
c)

⩽ min
{

2Cd2 log(A/δ)
Γ

,
√

(8dλ1(V) + α0 + α) log(A/δ)
n− Γ

,

(8dλ1(V) + α0 + α) log(A/δ)
n− Γ

}
+

n∑
t=1

AH2
Uη

2P(ξcδ(n− Γ))

+

n∑
t=1

AH2
Uη

2P ((ξvarδ (Γ))
c)

(a)

⩽ min
{

8Cd2σ2
max log(nA)√
n

,
√

48(dλ1(V) + α0 + α) log(nA)
n

,

48(dλ1(V) + α0 + α) log(nA)
n

}
+O

(
1
n

)
⩽

48d2σ2
maxλ1(V) log(nA)

n
+

48α log(nA)
n

+
48α0 log(nA)

n
+O

(
1
n

)
(b)

⩽
48d2σ2

maxλ1(V) log(nA)
n

+
144dλ1(V)CΓ ,σ2

min
(δ) log(nA)

n

+
48dλ1(V)Γ log(nA)

n3/2 +
48ϵ log(nA)

n
+O

(
1
n

)
where (a) follows as Proposition 6 and setting δ = 1/n3 and noting that
√
n > d. The (b) follows by setting (1 + 2CΓ (δ))ϵ and the definition of

α. Recall that for Γ =
√
n we have that CΓ ,σ2

min
(δ) =

2Cd2σ2
max log(A/δ)
σ2

minΓ
=

2Cd2σ2
max log(A/δ)
σ2

min
√
n

. Then setting ϵ = 1/
√
n we can bound the loss of the
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following PE-Optimal b̂ as

Ln(π, b̂, Σ̂Γ ) ⩽ Oκ2,H2
U

(
d3σ2

maxλ1(V) log(nA)
σ2

minn

)
+Oκ2,H2

U

(
d2σ2

maxλ1(V) log(nA)
n3/2

)
+Oκ2,H2

U

(
1
n

)
.

The claim of the proposition follows.

Remark B.10. (Discussion on loss) Observe that from Proposition 6 that
the MSE for policy evaluation setting scales as O(d

3 log(n)
n

). We contrast this
result with Chaudhuri et al. (2017) who obtain a bound on the MSE ED[∥θ∗ −

θ̂n∥2] ⩽ O(d log(n)
n

) in a related setting. Note that Chaudhuri et al. (2017) only
considers the setting when Σ∗ is rank 1. We make no such assumption and get an
additional factor of d in our result due to exploration in d2 dimension to estimate
Σ∗. Finally we get the scaling as d3 due to

∑
a,a ′ w(a)⊤A−1

b∗,Σ̂Γ
w(a ′) ⩽ dλ1(V)

from Theorem B.5. Also observe that we estimate ED[
∑
aw(a)⊤(θ∗ − θ̂n)

2] as
opposed to ED[∥θ∗ − θ̂n∥2] in Chaudhuri et al. (2017).

Regret of Algorithm 2

Corollary B.11. For, n ⩾ 16C2d4σ4
max log2(A/δ)/σ4

min we have that for all
action a, |σ̂2

Γ (a) − σ
2(a)| ⩽ σ2

min/2.

Proof. From the Theorem A.4, we know that
∣∣∣x(a)⊤(Σ̂Γ − Σ∗)x(a)

∣∣∣ ⩽ 2Cd2σ2
max log(A/δ)
Γ

with probability 1 − 8δ. Hence we can show that

|σ̂2
Γ (a) − σ

2(a)| ⩽
2Cd2σ2

max log(A/δ)
Γ

=
2Cd2σ2

max log(A/δ)√
n

(a)

⩽
2Cd2σ2

max log(A/δ)√
16C2d4σ4

max log2(A/δ)/σ4
min

=
σ2

min
2 ,
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where (a) follows for n ⩾ 16C2d4σ4
max log2(A/δ)/σ4

min. The claim of the
corollary follows.

Lemma B.12. (Loss Concentration of design matrix) Let Σ̂Γ be the empirical
estimate of Σ∗. Define V =

∑
a,a ′ w(a)w(a ′)⊤. We have that for any arbitrary

proportion b the following

P
( ∣∣∣∣∣∑

a,a ′

w(a)⊤(A−1
b∗,Σ̂Γ

− A−1
b∗,Σ∗

)w(a ′)

∣∣∣∣∣ ⩽ 2CB∗d3 log(A/δ)
Γ

)
⩾ 1 − δ

where B∗ is a problem-dependent quantity such that

B∗ =

(∥∥A−1
b∗,Σ∗

w
∥∥2
∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤H2
U

∥∥∥∥∥ ·∥∥∥∥∥∥∥
 A∑
a=1

b∗(a)w(a)w(a)⊤

σ2(a) +
2Cd2σ2

max log(9H2
U/δ)√

n

−1

w

∥∥∥∥∥∥∥
)

and C > 0 is a universal constant.
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Proof. We have the following∣∣∣∣∣∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′) −
∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∑
a

w(a)⊤︸ ︷︷ ︸
w

(
A−1

b∗,Σ̂Γ
− A−1

b∗,Σ∗

)∑
a

w(a)︸ ︷︷ ︸
w

∣∣∣∣∣∣∣∣∣
=
∣∣∣w⊤

(
A−1

b∗,Σ∗

(
Ab∗,Σ∗ − Ab∗,Σ̂Γ

)
A−1

b∗,Σ̂Γ

)
w
∣∣∣

=

∣∣∣∣∣∣∣w⊤ ( A−1
b∗,Σ∗︸ ︷︷ ︸

u

(
Ab∗,Σ∗ − Ab∗,Σ̂Γ

)
A−1

b∗,Σ̂Γ
)w︸ ︷︷ ︸

v

∣∣∣∣∣∣∣
=
∣∣∣u(Ab∗,Σ∗ − Ab∗,Σ̂Γ

)
v
∣∣∣ (a)⩽ ∥u∥∥∥∥Ab∗,Σ∗ − Ab∗,Σ̂Γ

∥∥∥︸ ︷︷ ︸
∆

∥v∥ (B.25)

where, (a) follows by Cauchy-Schwarz inequality. Now observe that the
vector u ∈ Rd is a problem dependent quantity. We now bound the ∆ in
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(B.25) as follows

∆ =

∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤

x(a)⊤Σ∗x(a) −

A∑
a=1

b∗(a)w(a)w(a)⊤

x(a)⊤Σ̂Γx(a)

∥∥∥∥∥
(a)
=

∥∥∥∥∥∑
a

b∗(a)w(a)w(a)⊤

σ2(a)
−
∑
a

b∗(a)w(a)w(a)⊤

σ̂2
Γ (a)

∥∥∥∥∥
=

∥∥∥∥∥∑
a

b∗(a)w(a)w(a)⊤
(

1
σ2(a)

−
1

σ̂2
Γ (a)

)∥∥∥∥∥
=

∥∥∥∥∥∑
a

b∗(a)w(a)w(a)⊤
(
σ̂2
Γ (a) − σ

2(a)

σ̂2
Γ (a)σ

2(a)

)∥∥∥∥∥
(b)

⩽

∥∥∥∥∥∑
a

b∗(a)w(a)w(a)⊤
(
σ̂2
Γ (a) − σ

2(a)

σ4
min

)∥∥∥∥∥
=

∥∥∥∥∥ 1
σ4

min

∑
a

b∗(a)w(a)w(a)⊤
(

x(a)⊤Σ̂Γx(a) − x(a)⊤Σ∗x(a)
)∥∥∥∥∥

=
1
σ4

min

∥∥∥∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤︸ ︷︷ ︸
Problem dependent quantity

(
x(a)⊤

(
Σ̂Γ − Σ∗

)
x(a)

)
︸ ︷︷ ︸

Random Quantity

∥∥∥∥∥∥∥∥
where, (a) follows σ̂2

Γ (a) = x(a)⊤Σ̂Γx(a) and σ2(a) = x(a)⊤Σ∗x(a), ad
(b) follows from Theorem B.11. Now observe from Theorem B.8 that we
can bound the quantity

∥Σ̂Γ − Σ∗∥ ⩽
2Cd2σ2

maxλ
−1
min(Y) log(A/δ)
Γ

.

Then we also have that the spread of maximum eigenvalue of ∥Σ̂Γ − Σ∗∥2
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is controlled which implies

1
σ4

min

∥∥∥∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤︸ ︷︷ ︸
Problem dependent quantity

(
x(a)⊤

(
Σ̂Γ − Σ∗

)
x(a)

)
︸ ︷︷ ︸

Random Quantity

∥∥∥∥∥∥∥∥
(a)

⩽

∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤(x(a)⊤x(a))

∥∥∥∥∥ 2Cd2σ2
maxλ

−1
min(Y) log(A/δ)
Γ

where, (a) follows by Theorem B.8. Next for the third quantity in (B.25)
we can bound as follows

∥v∥ = ∥A−1
b∗,Σ̂Γ

w∥ =

∥∥∥∥∥∥
(
A∑
a=1

b∗(a)w(a)w(a)⊤

σ̂2
Γ (a)

)−1

w

∥∥∥∥∥∥
(a)

⩽

∥∥∥∥∥∥∥
 A∑
a=1

b∗(a)w(a)w(a)⊤

σ2(a) +
2Cd2σ2

max log(A/δ)√
n

−1

w

∥∥∥∥∥∥∥
where, (a) follows as

σ̂2(a) ⩽ σ2(a) +
2Cd2σ2

max log(A/δ)
Γ

from Theorem A.4. Finally observe that the first part of (B.25) we have
that w⊤A−1

b∗,Σ∗
is a problem dependent parameter. Finally, plugging back
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everything in (B.25) we get

∥u∥
∥∥∥Ab∗,Σ∗ − Ab∗,Σ̂Γ

∥∥∥ ∥v∥
⩽
∥∥A−1

b∗,Σ∗
w
∥∥ ∥∥∥∥∥

A∑
a=1

b∗(a)w(a)w(a)⊤(x(a)⊤x(a))

∥∥∥∥∥ ·
2Cd2σ2

max log(A/δ)
σ4

minΓ

∥∥∥∥∥∥
(
A∑
a=1

b∗(a)w(a)w(a)⊤

σ2(a) +
2Cd2σ2

max log(A/δ)
Γ

)−1

w

∥∥∥∥∥∥
⩽

(∥∥A−1
b∗,Σ∗

w
∥∥2
∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤H2
U

∥∥∥∥∥︸ ︷︷ ︸
B∗

·

∥∥∥∥∥∥
(
A∑
a=1

b∗(a)w(a)w(a)⊤

σ2(a) +
2Cd2σ2

max log(A/δ)
Γ

)−1

w

∥∥∥∥∥∥


︸ ︷︷ ︸
B∗

2Cd3 log(A/δ)
Γ

(a)
=

2CB∗d3σ2
maxλ

−1
min(Y) log(A/δ)
Γ

where, (a) follows by substituting the value of B∗.

Regret Bound of SPEED

Theorem 1. (formal) Running Algorithm 2 with budgetn ⩾ 16C2d4 log2(A/δ)/σ4
min

the resulting regret satisfies

Rn ⩽
1
n3/2 +Oκ2,H2

U

(
d2σ2

max log(n)
σ2

minn
3/2

)
+

2B∗Cd3σ2
max log(n)

σ2
minn

3/2

+
d2

n2 Tr
(∑
a,a ′

w(a)w(a ′)⊤

)
+

2AH2
Uκ

2

n2

= Oκ2,H2
U

(
B∗d3σ2

max log(n)
σ2

minn
3/2

)
.
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Proof. We follow the same steps as in Proposition 6. Observe that 16C2d4σ4
max log2(A/δ)

σ4
min

>

2Cd2σ2
max log(A/δ)
σ2

minΓ
. Hence for z =

∑
aw(a) the loss function forn ⩾ 2Cd2σ2

max log(A/δ)
σ2

minΓ

as follows

Ln(π, b̂, Σ̂Γ ) := E
[(

z⊤(θ̂n−Γ − θ∗)
)2
]

(a)

⩽
(

1 + 2CΓ ,σ2
min
(δ)
)

z⊤(X̃⊤
n−Γ Σ̂

−1
Γ X̃n−Γ )−1z.

where, (a) follows from (B.15). Recall that the quantity of the samples
collected (following b̂∗) after exploration is as follows:

(
X̃⊤
n−Γ Σ̂

−1
Γ X̃n−Γ

)−1
=

(∑
a

⌈
(n− Γ)b̂∗(a)σ̂−2

Γ (a)
⌉

w(a)w(a)⊤

)−1

=
1

n− Γ
A−1
b̂∗,Σ̂Γ

.

Hence we use the loss function

L ′
n−Γ (π, b̂, Σ̂Γ ) := (1 + 2CΓ (δ)) z⊤(X̃⊤

n−Γ Σ̂
−1
Γ X̃n−Γ )−1z

=

(
1 + 2CΓ ,σ2

min
(δ)
)

n− Γ

∑
a,a ′

w(a)⊤A−1
b̂∗,Σ̂Γ

w(a ′).

Also, recall that we define

Ln(π, b∗, Σ̂Γ ) =
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′).
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Then we can decompose the regret as follows:

Rn = Ln(π, b̂, Σ̂Γ ) − L∗
n(π, b∗,Σ∗)

⩽ L ′
n−Γ (π, b̂, Σ̂Γ ) − L ′

n−Γ (π, b̂∗, Σ̂Γ ) + L ′
n−Γ (π, b̂∗, Σ̂Γ ) − L∗

n(π, b∗,Σ∗)

= L ′
n−Γ (π, b̂, Σ̂Γ ) − L ′

n−Γ (π, b̂∗, Σ̂Γ )︸ ︷︷ ︸
Approximation error

+L ′
n−Γ (π, b̂∗, Σ̂Γ ) − Ln(π, b∗, Σ̂Γ )︸ ︷︷ ︸

Comparing two diff loss

+ Ln(π, b∗, Σ̂Γ ) − L∗
n(π, b∗,Σ∗)︸ ︷︷ ︸

Estimation error of Σ∗

First recall that the good variance event as follows:

ξvarδ (Γ) :=

{
∀a,
∣∣∣x(a)⊤ (Σ̂Γ − Σ∗

)
x(a)

∣∣∣ < 2Cd2σ2
max log(A/δ)
Γ

}
.

Now first observe that n ⩾ 16C2d4σ4
max log2(A/δ)/σ4

min is a larger regime
than n ⩾ 2Cd2σ2

max log(A/δ)
σ2

minΓ
required for Proposition 6. Then under the good

variance event, following the same steps as Proposition 6 we can bound
the approximation error setting δ = 1/n3 as follows

L ′
n−Γ (π, b̂, Σ̂Γ ) − L ′

n−Γ (π, b̂∗, Σ̂Γ )

⩽ Oκ2,H2
U

(
d2σ2

max log(A/δ)
σ2

minn
3/2

)
I{ξvarδ (Γ)}+

n∑
t=1

AH2
Uκ

2P ((ξvarδ (Γ))
c)

⩽ Oκ2,H2
U

(
d2σ2

max log(A/δ)
σ2

minn
3/2

)
+
AH2

Uκ
2

n2

and the second part of comparing the two losses as

L ′
n−Γ (π, b̂∗, Σ̂Γ ) − Ln(π, b∗, Σ̂Γ )

⩽ Oκ2,H2
U

(
d2σ2

max log(A/δ)
σ2

minn
3/2

)
I{ξvarδ (Γ)}+

n∑
t=1

AH2
Uκ

2P ((ξvarδ (Γ))
c)

⩽ Oκ2,H2
U

(
d2σ2

max log(A/δ)
σ2

minn
3/2

)
+
AH2

Uκ
2

n2
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We define the good estimation event as follows:

ξestδ (Γ) :=

{ ∣∣∣∣∣∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′) −
∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′)

∣∣∣∣∣
⩽

2CB∗d3σ4
max log(9H2

U/δ)

σ4
minΓ

}
Under the good estimation event ξest(Γ) and using Theorem 3.2 we can
show that the estimation error is given by

Ln(π, b∗, Σ̂Γ ) − Ln(π, b∗,Σ∗)

⩽

(
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′) −
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′)

)
I{ξestδ (Γ)}

+

(
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′) −
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′)

)
I{ξestδ (Γ)C}

=

(
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ̂Γ

w(a ′) −
1
n

∑
a,a ′

w(a)⊤A−1
b∗,Σ∗

w(a ′)

)
I{ξestδ (Γ)}

+
1
n

Tr
((

A−1
b∗,Σ̂Γ

− A−1
b∗,Σ∗

)(∑
a,a ′

w(a)w(a ′)⊤

))
I{ξestδ (Γ)C}

(a)

⩽
1
n

2B∗Cd
3σ2

max log(1/δ)
σ2

minΓ
+

1
n

Tr
(
A−1

b∗,Σ∗

)
Tr
(

A−1
b∗,Σ̂Γ

)
Tr
(∑
a,a ′

w(a)w(a ′)⊤

)
δ

(b)

⩽
1
n

2B∗Cd
3σ2

max log(n)
σ2

min
√
n

+
d2

n2 Tr
(∑
a,a ′

w(a)w(a ′)⊤

)

=
2B∗Cd3σ2

max log(n)
σ2

minn
3/2 +

d2

n2 Tr
(∑
a,a ′

w(a)w(a ′)⊤

)

where, (a) follows from Theorem 3.2, (b) follows as Γ =
√
n and setting
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δ = 1
n3 . Combining everything we have the following regret as

Rn ⩽
1
n3/2 +Oκ2,H2

U

(
d2σ2

max log(n)
σ2

minn
3/2

)
+

2B∗Cd3σ2
max log(n)

σ2
minn

3/2

+
d2

n2 Tr
(∑
a,a ′

w(a)w(a ′)⊤

)
+

2AH2
Uκ

2

n2

= Oκ2,H2
U

(
B∗d3σ2

max log(n)
σ2

minn
3/2

)
where,

B∗ =

(∥∥A−1
b∗,Σ∗

w
∥∥2
∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤H2
U

∥∥∥∥∥ ·∥∥∥∥∥∥∥
 A∑
a=1

b∗(a)w(a)w(a)⊤

σ2(a) +
2Cd3 log(9H2

U/δ)√
n

−1

w

∥∥∥∥∥∥∥
)

.

The claim of the theorem follows.

Remark B.13. (Discussion on Sample regime and B∗): Observe that com-
bining Proposition 5 and Theorem 1 we can have a loss of SPEED that scales
as

Oκ2,H2
U,σ2

max,σ2
min

(
d log(n)
n

)
+Oκ2,H2

U,σ2
max,σ2

min

(
B⋆d3 log(n)

n3/2

)
which seems to contradict the loss bound in Proposition 6.

However, this is not the case. Observe that the B∗ is a problem-dependent
quantity that depends on a number of samples n. We define it as

B∗ :=
∥∥A−1

b∗,Σ∗
w
∥∥2
∥∥∥∥∥
A∑
a=1

b∗(a)w(a)w(a)⊤H2
U

∥∥∥∥∥
∥∥∥∥∥∥∥
 A∑
a=1

b∗(a)w(a)w(a)⊤

σ2(a) +
2Cd2 log(A/δ)√

n

−1

w

∥∥∥∥∥∥∥ .
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However, there are two regimes when n ⩽ 16C2d4σ4
max log2(A/δ)

σ4
min

then B∗ = Θ(
√
n)

and for n >
16C2d4σ4

max log2(A/δ)

σ4
min

then B∗ = o(
√
n) . In the first case when

n ⩽ 16C2d4σ4
max log2(A/δ)

σ4
min

with B∗ = Θ(
√
n) we have the loss that scales as

Oκ2,H2
U,σ2

max,σ2
min

(
d log(n)
n

)
+Oκ2,H2

U,σ2
max,σ2

min

(
B∗d

3 log(n)
n3/2

)
= Oκ2,H2

U,σ2
max,σ2

min

(
d3 log(n)

n

)

This is the regime of Proposition 6 as it holds for all n ⩾ 2Cd2σ2
max log(A/δ)
σ2

minΓ
for

Γ ⩾ 1. Note that 2Cd2σ2
max log(A/δ)
σ2

minΓ
is less than 16C2d4σ4

max log2(A/δ)

σ4
min

.

In the second case when n > 16C2d4σ4
max log2(A/δ)

σ4
min

with B∗ = o(
√
n) we have

a tighter bound as the first term dominates and we have the loss scaling as

Oκ2,H2
U,σ2

max,σ2
min

(
d log(n)
n

)
+Oκ2,H2

U,σ2
max,σ2

min

(
B⋆d3 log(n)

n3/2

)
= Oκ2,H2

U,σ2
max,σ2

min

(
d log(n)
n

)
Intuitively this is a larger sample regime where the SPEED has a good estimation
of ˝∗ and the design matrix estimation has also concentrated. Combining both the
regimes we can show that for n ⩾ 2Cd2 log(A/δ)

σ_min2Γ
the loss of SPEED scales by

max
{
Oκ2,H2

U,σ2
max,σ2

min

(
d log(n)
n

)
,Oκ2,H2

U,σ2
max,σ2

min

(
d3 log(n)

n

)}
= Oκ2,H2

U,σ2
max,σ2

min

(
d3 log(n)

n

)
which is the bound of Proposition 6. So in summary Proposition 6 is a more
general bound for a larger regime size than Theorem 1 and does not contradict the
theorem statement.
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B.2 Regret Lower Bound
Theorem 2. (Lower Bound) Let |Θ| = 2d andθ∗ ∈Θ. Then any δ-PAC policy
π following the design b ∈ △(A) satisfiesR ′

n = Ln(π, b̂,Σ∗)−Ln(π, b∗,Σ∗) ⩾

Ω

(
d2λd(V) log(n)

n3/2

)
for the environment in (B.26).

Proof. Step 1 (Define Environment): We define an environment model
Bj consisting of A actions and J hypotheses with true hypothesis θ∗ = θj

(j-th column) as follows:

θ = θ1 θ2 θ3 . . . θJ

µ1(θ) = β β−β
J
β− 2β

J
. . . β− (J−1)β

J

µ2(θ) = ι21 ι22 ι23 . . . ι2J
... ...

µA(θ) = ιA1 ιA2 ιA3 . . . ιAJ

(B.26)

where, each ιij is distinct and satisfies ιij < β/4J. θ1 is the optimal hypoth-
esis in B1, θ2 is the optimal hypothesis in B2 and so on such that for each
Bj and j ∈ [J] we have column j as the optimal hypothesis.

Finally, assume that Σ = θθ⊤ is a rank one matrix. To distinguish
between the covariance matrix between two distributions we denote Σθ =

θθ⊤. Therefore we have that σ2
i(θ) = x⊤

i Σθxi = (x⊤
i θ)

2 = µ2
i(θ). Hence

for any algorithm, identifying the co-variance matrix Σθ∗ is the same as
identifying the θ∗. Also assume that π(a) = 1

A
. Hence each action is

equally weighted by the target policy.
This is a general hypothesis testing setting where the functions µa(θ)

can be thought of as linear functions of θ such that µa(θ) = x(a)⊤θ.
Assume that 0 < µa(θ) ⩽ 1, and log(µa(θ)/µa(θ ′)) > 1/4.

Now observe that between any two hypothesis θ and θ ′ we have the
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following

KL
(
N(µi(θ), x⊤

i Σθxi))
∣∣∣∣N(µi(θ

′), x⊤
i Σθ ′xi))

)
= 2 log(σi(θ

′)

σi(θ)
) +

σ2
i(θ) + (µi(θ) − µi(θ

′))2

2σ2
i(θ

′)
−

1
2

(a)
= 2 log(µi(θ

′)

µi(θ)
) +

µ2
i(θ) + (µi(θ) − µi(θ

′))2

2µ2
i(θ

′)
−

1
2

(a)

⩾
(µi(θ) − µi(θ

′))2

8
(B.27)

where, (a) follows from the condition that 0 < µa(θ) ⩽ 1, and

log(µa(θ)/µa(θ ′)) > 1/4.

Step 2 (Minimum samples to verify θ∗): Let,Λ1 be the set of alternate
models having a different optimal hypothesis than θ∗ = θ1 such that all
models having different optimal hypothesis than θ1 such as B2,B3, . . .BJ
are in Λ1. Let τδ be the stopping time for any δ-PAC policy b. That is τδ is
the time that any algorithm stops and outputs its estimate θ̂τδ . Let Tt(a)
denote the number of times the action a has been sampled till round t. Let
θ̂τδ be the predicted optimal hypothesis at round τδ. We first consider the
model B1. Define the event ξ = {θ̂τδ ̸= θ∗} as the error event in model B1.
Let the event ξ ′ = {θ̂τδ ̸= θ

′∗} be the corresponding error event in model
B2. Note that ξ∁ ⊂ ξ ′. Now since b is δ-PAC policy we have PB1,b(ξ) ⩽ δ

and PB2,b(ξ
∁) ⩽ δ. Hence we can show that,
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2δ ⩾ PB1,b(ξ) + PB2,b(ξ
∁)

(a)

⩾
1
2 exp (−KL (PB1,b||PB2,b))

KL (PB1,b||PB2,b) ⩾ log
(

1
4δ

)
1
8

A∑
i=1

EB1,b[Tτδ(i)] ·
(
µi(θ∗) − µi(θ

′

∗)
)2 (b)

⩾ log
(

1
4δ

)
1
8

(
β− β+

β

J

)2

EB1,b[Tτδ(1)] +
1
8

A∑
i=2

(ιi1 − ιi2)
2EB1,b[Tτδ(i)]

(c)

⩾ log
(

1
4δ

)

1
8

(
1
J

)2

β2EB1,b[Tτδ(1)] +
1
8

A∑
i=2

(ιi1 − ιi2)
2EB1,b[Tτδ(i)] ⩾ log

(
1

4δ

)
1
8

(
1
J

)2

β2EB1,b[Tτδ(1)] +
1
8

A∑
i=2

β2

4J2EB1,b[Tτδ(i)]
(d)

⩾ log
(

1
4δ

)
(B.28)

where, (a) follows from Theorem B.15, (b) follows from Theorem B.14, (c)
follows from the construction of the bandit environments and (B.27), and
(d) follows as (ιij − ιij ′)2 ⩽ β2

4J2 for any i-th action and j-th hypothesis.
Now, we consider the alternate model B3. Again define the event

ξ = {θ̂τδ ̸= θ∗} as the error event in modelB1 and the event ξ ′ = {θ̂τδ ̸= θ
′′
∗}

be the corresponding error event in model B3. Note that ξ∁ ⊂ ξ ′. Now
since b is δ-PAC policy we have PB1,b(ξ) ⩽ δ and PB3,b(ξ

∁) ⩽ δ. Following
the same way as before we can show that,

1
8

(
2
J

)2

β2EB3,b[Tτδ(1)] +
1
8

A∑
i=2

β2

4J2EB3,b[Tτδ(i)]
(d)

⩾ log
(

1
4δ

)
. (B.29)

Similarly, we get the equations for all the other (J− 2) alternate models in
Λ1. Now consider an optimization problem (ignoring the constant factor
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of 1
8 across all the constraints)

min
ti:i∈[A]

∑
ti

s.t.
(

1
J

)2

β2t1 +
β2

4J2

A∑
i=2

ti ⩾ log(1/4δ)

(
2
J

)2

β2t1 +
β2

4J2

A∑
i=2

ti ⩾ log(1/4δ)

...(
J− 1
J

)2

β2t1 +
β2

4J2

A∑
i=2

ti ⩾ log(1/4δ)

ti ⩾ 0,∀i ∈ [A]

where the optimization variables are ti. It can be seen that the optimum
objective value is J2β−2 log(1/4δ). Interpreting ti = EB1,b[Tτδ(i)] for all i,
we get that EB1,b[τδ] =

∑
i ti = t1 ⩾ J2β−2 log(1/4δ) which gives us the

required lower bound to the number of pulls of action 1. Observe that the
optimum objective value is reached by substituting t1 = J

2β−2 log(1/4δ)
and t2 = . . . = tA = 0. It follows that for verifying any hypothesis θj ̸= θ∗

the verification proportion is given by bθj = (1, 0, 0, . . . , 0︸ ︷︷ ︸
(A-1) zeros

). Observe setting

β = J
√

log(1/4δ)/n recovers τδ = n which implies that a budget of n
samples is required for verifying hypothesis θj = θ∗. For the remaining
steps we take β = J

√
log(1/4δ)/n.

Step 3 (Lower Bounding Regret): Then we can show that the MSE of
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any hypothesis θj = θ∗

ED

(∑
a

π(a)x(a)⊤(θj − θ̂n)

)2
 =

1
n

∑
a,a ′

w(a)A−1
bθj

,Σθ∗
w(a ′)

=
1
n

Tr
(

A−1
bθj

,Σθ∗

∑
a,a ′

w(a)w(a ′)︸ ︷︷ ︸
V

)

where, bθj(a) is the number of samples allocated to action a. First we will
bound the loss of the oracle for this environment given by Ln(π, b,Σθ∗) =
1
n

Tr(A−1
bθj

,Σθ∗
V). Note that the oracle has access to the Σθ∗ , so it only need

to verify whether θj = θ∗ by following bθj . Then we have that

Abθj
,Σθ∗

=
∑
a

bθj(a)
x(a)x(a)⊤
σ2(a)

=
w(1)w(1)⊤
(x(1)⊤θj)2 =

w(1)w(1)⊤

(β− jβ
J
)2

=⇒ Tr(A−1
bθj

,Σθ∗
) =

(β− jβ
J
)2

Tr(w(1)w(1)⊤)

Now we will bound the loss of the algorithm that uses Σ̂β to estimate b̂. It
then collects the D and uses it to estimate θ∗ following the WLS estimation
using Σθ∗ .

Denote the number of times the algorithm samples each action i be
T ′
n(i). Let the algorithm allocate T ′

n(1) = J2β−2 log(1/4δ) − d samples to
action 1 and to any other action i ′ it allocates T ′

n(i
′) = d samples such

that d ⩾ 1. WLOG let i ′ = 2. Finally let T ′
n(3) = . . . = T ′

n(A) = 0. Hence
the optimal action 1 is under-allocated and the sub-optimal action 2 is
over-allocated. The loss of such an algorithm now is given by

Ln(π, b̂,Σθ∗) =
1
n

Tr(A−1
b̂,Σθ∗

V).
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Hence it follows by setting δ = 1/(nJ) that

A
b̂,Σθ∗

=
1
n

∑
a

nb̂(a)
x(a)x(a)⊤
σ2(a)

=
1
n

∑
a

T ′
n(a)

x(a)x(a)⊤
σ2(a)

=
1
n
T ′
n(1)

x(1)x(1)⊤
σ2(1) +

1
n
T ′
n(2)

x(2)x(2)⊤
σ2(2)︸ ︷︷ ︸

⩾0

⩾
1
n
T ′
n(1)

w(1)w(1)⊤
(x(1)⊤θj)2

(a)
=
J2β−2 log(nJ) − d

n

w(1)w(1)⊤

(β− jβ
J
)2

where, (a) follows by substituting the value of T ′
n. Then we have that

Tr(A−1
b̂,Σθ∗

) ⩾
n

J2β−2 log(nJ) − d
(β− jβ

J
)2

Tr(w(1)w(1)⊤)

=
n

J2β−2(log(nJ) − d
J2β−2 )

(β− jβ
J
)2

Tr(w(1)w(1)⊤)
(a)

⩾
β2 log(nJ) + d

J2β−2

J2

(β− jβ
J
)2

Tr(w(1)w(1)⊤)

⩾
β2 log(nJ)

J2

(β− jβ
J
)2

Tr(w(1)w(1)⊤)

where, (a) follows as for d ⩾ 1 we have that

n−(log(nJ))2 ⩾ −
d2

(J2β−2)2 =⇒ (log(nJ)− d

J2β−2 )
−1 ⩾ log(nJ)+ d

J2β−2 .

Step 4 (Lower Bound regret): Hence we have the regret for verifying
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any hypothesis θj = θ∗ as follows:

R ′
n = Ln(π, b̂,Σθ∗) − Ln(π, b∗,Σθ∗)

⩾
1
n

Tr
(

A−1
b̂,Σθ∗

V
)
−

1
n

Tr
(

A−1
bθj

,Σθ∗
V
)

=
1
n

Tr
((

A−1
b̂,Σθ∗

− A−1
bθj

,Σθ∗

)
V
)

⩾
λd(V)

n
Tr
(

A−1
b̂,Σθ∗

− A−1
bθj

,Σθ∗

)
=
λd(V)

n

[
Tr
(

A−1
b̂,Σθ∗

)
− Tr

(
A−1

bθj
,Σθ∗

)]
=
λd(V)

n

[
β2 log(nJ)

J2

(β− jβ
J
)2

Tr(w(1)w(1)⊤) −
(β− jβ

J
)2

Tr(w(1)w(1)⊤)

]

=
λd(V)β2(β− jβ

J
)2

nTr(w(1)w(1)⊤)

[
log(nJ)
J2 − 1

]

(a)

⩾
λd(V)β2(β− jβ

J
)2

nTr(w(1)w(1)⊤)

[
log(nJ)

2J2

]
(b)

⩾
dλd(V)β2

n3/2Tr(w(1)w(1)⊤)

[
log(nJ)

2J2

]
(c)

⩾
d2λd(V)β2

n3/2Tr(w(1)w(1)⊤) log(2n)

= Ω

(
d2λd(V) log(n)

n3/2

)

where, (a) follows as log(nJ)
J2 −1 ⩾ log(nJ)

2J2 , (b) follows as gap (β− jβ
J
)2 ⩾ d√

n

for any θj, and (c) follows by substituting |Θ| = J = 2d.

Lemma B.14. (Restatement of Lemma 15.1 in Lattimore and Szepesvári
(2020b), Divergence Decomposition) Let B and B ′ be two bandit models
having different optimal hypothesis θ∗ and θ

′∗ respectively. Fix some policy π
and round n. Let PB,π and PB ′,π be two probability measures induced by some
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n-round interaction of π with B and π with B ′ respectively. Then

KL (PB,π||PB ′,π) =

A∑
i=1

EB,π[Tn(i)] · KL(N(µi(θ), 1)||N(µi(θ∗), 1))

where, KL (.||.) denotes the Kullback-Leibler divergence between two probability
measures and Tn(i) denotes the number of times action i has been sampled till
round n.

Lemma B.15. (Restatement of Lemma 2.6 in Tsybakov (2008)) Let P,Q
be two probability measures on the same measurable space (Ω,F) and let ξ ⊂ F

be any arbitrary event then

P(ξ) +Q
(
ξ∁
)
⩾

1
2 exp (−KL(P||Q))

where ξ∁ denotes the complement of event ξ and KL(P||Q) denotes the Kullback-
Leibler divergence between P and Q.

Environment E: Consider the environment E which consist of 3 actions
in R2 such that x(1) = [1, 0] is along x-axis, x(2) = [0, 1] is along y-axis
and x(3) = [1/

√
2, 1/
√

2]. Let θ∗ = [1, 0] and so the optimal action is
action 1. Let the target policy π = [0.9, 0.1, 0.0]. Finally, let the variances
be σ2(1) = 5/100, σ2(2) = 1.0 and σ2(3) = 5/100.

Proposition 8. (Onpolicy regret) Let the Onpolicy algorithm have access to the

variance in environment E. Then the regret of Onpolicy scales as O
(
λ1(V)

n

)
.

Proof. Recall that in E, there are 3 actions in R2 such that x(1) = [1, 0]
is along x-axis, x(2) = [0, 1] is along y-axis and x(3) = [1/

√
2, 1/
√

2].
The θ∗ = [1, 0] and so the optimal action is action 1. The target policy
π = [0.9, 0.1, 0.0]. Finally, let the variances be σ2(1) = 1.0, σ2(2) = 1.0 and
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σ2(3) = 5/100. Hence, PE-Optimal design results in b∗ = [0.5, 0.5, 0.0].

Aπ,Σθ∗
=

∑
a

π(a)
x(a)x(a)⊤
σ2(a)

=
9

10 · x(1)x(1)
⊤ +

1
10x(2)x(2)⊤

Ab∗,Σθ∗
=

∑
a

b∗(a)
x(a)x(a)⊤
σ2(a)

=
1
2 · x(1)x(1)

⊤ +
1
2x(2)x(2)⊤

Recall that V =
∑
aw(a)w(a)⊤. Hence, the regret scales as

Rn = Ln(π,π,Σθ∗) − Ln(π, b∗,Σθ∗)

⩽
1
n

Tr
(

A−1
π,Σθ∗

V
)
−

1
n

Tr
(

A−1
b∗,Σθ∗

V
)

=
1
n

Tr
((

A−1
π,Σθ∗

− A−1
b∗,Σθ∗

)
V
)

(a)

⩽ O

(
λ1(V)

n

)
where, (a) follows by substituting the value of Aπ,Σθ∗

and Ab∗,Σθ∗
.

B.3 Additional Experiments
In this section, we state additional experimental details.

Unit Ball: This experiment consists of a set of 4 actions that are arranged
in a unit ball in R2, and ∥x(a)∥ = 1 for all a ∈ A. We consider three groups
of actions: a) the reward-maximizing action in the direction of θ∗, b) the
informative action (orthogonal to optimal action) that maximally reduces
the uncertainty of θ̂t and c) the less-informative actions as shown in
Figure 3.1 (Top-Left). The variance of the most informative action is chosen
to be high (0.35), but the target probability is set as low 0.1, which forces
the on-policy algorithm to sample the high variance action less. Figure 3.1
(Top-Right) shows that SPEED outperforms Onpolicy, G-Optimal , and A-
Optimal . Note that we experiment with A-Optimal design (Fontaine et al.,
2021) because this criterion results in minimizing the average variance
of the estimates of the regression coefficients and is most closely aligned
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with our goal than G-, or, D-optimal designs (Jamieson and Jain, 2022).
Air Quality: We perform this experiment on real-world dataset Air

Quality from UCI datasets. The Air quality dataset consists of 1500 samples
each of which consists of 6 features. We first select 400 samples which are
the actions in our setting. We then fit a weighted least square estimate to
the original dataset and get an estimate of θ∗ and Σ∗. The reward model
is linear and given by x⊤

It
θ∗ + noise where xIt is the observed action at

round t, and the noise is a zero-mean additive noise with variance scaling
as x⊤

It
Σ∗xIt . Hence the variance of each action depends on their feature

vectors andΣ∗. Finally, we set a level τ, such that 30 actions having variance
crossing τ are set with low target probability, and the remaining probability
mass is uniformly distributed among the rest 370 action. Hence, again
high variance actions are set with a low target probability, which forces
the on-policy algorithm to sample the high-variance action less number
of times. We apply SPEED to this problem and compare it to baselines
A-Optimal , G-Optimal , and the Onpolicy algorithm.

Figure B.1: 10 action unit ball environment

Red Wine Quality: The UCI Red Wine Quality dataset consist of 1600
samples of red wine with each sample i having feature xi ∈ R11. We first fit
a weighted least square estimate to the original dataset and get an estimate
of θ∗ and Σ∗. The reward model is linear and given by xTItθ

∗ + noise
where xIt is the observed action at round t, and the noise is a zero-mean
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additive noise with variance scaling as x⊤
It
Σ∗xIt . Note that we consider the

1600 samples as actions. Then we run each of our benchmark algorithms
on this dataset and reward model. Finally, we set a level τ, such that
40 actions having variance crossing τ are set with low target probability,
and the remaining probability mass is uniformly distributed among the
rest 1560 action. Hence, again high variance actions are set with a low
target probability, which forces the on-policy algorithm to sample the high-
variance action less number of times. We apply SPEED to this problem
and compare it to baselines A-Optimal , G-Optimal , and the Onpolicy
algorithm.

Movielens: We experiment with a movie recommendation problem
on the MovieLens 1M dataset (Lam and Herlocker, 2016). This dataset
contains one million ratings given by 6 040 users to 3 952 movies. We first
apply a low-rank factorization to the rating matrix to obtain 5-dimensional
representations: θj ∈ R5 for user j ∈ [6 040] and x(a) ∈ R5 for movie
a ∈ [3 952]. In each run, we choose one user θj and 100 movies x(a)
randomly, and they represent the unknown model parameter and known
feature vectors of actions, respectively.

Increasing Dimension: We perform this experiment to show how the
MSE of SPEED scales with increasing dimensions and number of actions.
We choose dimension d ∈ {15, 20, 25}. For each dimension d ∈ {15, 20, 25}
we choose the number of actions |A| = d2 + 20. Hence we ensure that
the number of actions are greater than d2 dimensions. We also choose
the horizon as T ∈ {13000, 18000, 25000} for each d ∈ {15, 20, 25}. We
choose the same environment as the unit ball experiment. So the actions
arranged in a unit ball in R2 and ∥x(a)∥ = 1 for all a ∈ A. Again we
consider three groups of actions: a) the reward-maximizing action in the
direction of θ∗, b) the informative action (orthogonal to optimal action)
that maximally reduces the uncertainty of θ̂t and c) the less-informative
actions as shown in Figure B.1 but scaled to a larger set of actions. For each
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case of dimension d ∈ {15, 20, 25}, the variance of the most informative
actions along the directions orthogonal to the reward maximizing action
are chosen to be high, but the target probability is set as low, which forces
the on-policy algorithm to sample the high variance action less. We again
show the performance in Figure 3.1 (Bottom-left). We observe that with
increasing dimensions d the SPEED outperforms on-policy. Also, observe
that the oracle with knowledge of Σ∗ performs the best.

B.4 Table of Notations

Notations Definition
π(a) Target policy probability for action a
b(a) Behavior policy probability for action a
x(a) Feature of action a
θ∗ Optimal mean parameter
θ̂n Estimate of θ∗
µ(a) = x⊤θ∗ Mean of action a
µ̂t(a) = x⊤θ̂t Empirical mean of action a at time t
Rt(a) Reward for action a at time t
Σ∗ Optimal co-variance matrix
Σ̂t Empirical co-variance matrix at time t
σ2(a) = x(a)⊤Σ∗x(a) Variance of action a
σ̂2
t(a) = x(a)⊤Σ̂tx(a) Empirical variance of action a at time t
n Total budget
Tn(a) Total Samples of action a after n timesteps

Table B.1: Table of Notations for SPEED
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c appendix: saver: optimal data collection
strategy for safe policy evaluation in tabular
mdps

Previous results and Probability Tools

Proposition 1. (Restatement from Carpentier and Munos (2011)) In an
A-action bandit setting, the estimated return of π after n action-reward samples is
denoted by Yn. Note that the expectation of Yn after each action has been sampled
once is given by Vπ. Minimal MSE, ED

[
(Yn − Vπ)

2
]
, is obtained by taking

actions in the proportion:

b∗(a) :=
π(a)σ(a)∑A

a ′=1 π(a
′)σ(a ′)

. (C.1)

where b∗(a) denotes the optimal sampling proportion.

Lemma C.1. (Wald’s lemma for variance) (Resnick, 2019) Let {Ft} be a
filtration and Rt be a Ft-adapted sequence of i.i.d. random variables with vari-
ance σ2. Assume that Ft and the σ-algebra generated by {Rt ′ : t

′ ⩾ t+ 1} are
independent and T is a stopping time w.r.t. Ft with a finite expected value. If
E
[
R2

1
]
<∞ then

E

( n∑
t ′=1

Rt ′ − nµ

)2
 = E[n]σ2

Lemma C.2. (Restatement of Theorem 1 of Mukherjee et al. (2022a)) As-
sume the underlying MDP is an L-depth tree MDP as defined in Theorem 4.1. Let
the estimated return of the starting state s1

1 after n state-action-reward samples be
defined as Yn(s1

1). Let D be the observed data over n state-action-reward samples.
To minimize MSE ED[(Yn(s

1
1) − V

π(s1
1))

2] the optimal sampling proportions for
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any arbitrary state is given by:

b∗(a|s
ℓ
i)∝

(
π2(a|sℓi)

[
σ2(sℓi,a) +

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)M2(sℓ+1

j )

])1/2

,

where,M(sℓj) is the normalization factor defined as follows:

M(sℓi) :=
∑
a

(
π2(a|sℓi)

(
σ2(sℓi,a) +

∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)M2(sℓ+1

j )
))1/2

C.1 Intractable MDP
Proposition 1. Fix an arbitrary n > 0. Then there exists an environment where
no algorithm (including the safe oracle bk∗) can be run that will result in a regret
Rn = Ln(π, b) − L∗

n(π, b∗) of Õ(n−3/2) while satisfying the safety constraint,
where b∗ is the unconstrained oracle.

Proof. We first consider a bandit setting where there are 3 arms, action {0}
which is the safe action, and actions 1 and 2. Assume π(a) = 1/A so that
we can ignore its effect on optmal sampling policy b∗

Case 1 (All actions safe): First consider an environment when all
actions are safe. That is µc(0) = 0 and µc(1) = 1 and µc(2) = 1 − ϵ and
reward distributions are bounded between [0, 1]. Therefore at round ℓ ∈ [L]

we can guarantee for any α ∈ (0, 1] that

ℓ∑
ℓ ′=1

2∑
a=0

π(a)µ̂c,ℓ ′(a) ⩾ (1 − α)ℓ π0(0)µc(0)︸ ︷︷ ︸
0

, ∀ℓ ∈ [L]

where, π0 always samples safe action 0. Assume a safe oracle that knows
the variances of the actions but does not know the means of the actions
(both reward and cost means). Therefore from Carpentier and Munos
(2011) we know that the optimal way to reduce the MSE minb ED[(Y

π
n(s1) − V

π(s1))
2
]
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is to run the policy b∗(a) ∝ π(a)σ(a). We also know from Carpentier and
Munos (2011) that there exists an algorithm Asafe (like MC-UCB that
tracks b∗) that achieves a regret after n rounds as Rsafe

n = Õ(
K log(n)
n3/2 ) where

Õ hides logarithmic factors and problem dependent factors like bmin.
Case 2 (Some actions are unsafe): In this case, we now analyze a

safe oracle algorithm bk∗ . Consider an environment where µc(0) = 0.5,
µc(1) = 0.5 + α, and µc(2) = 0. Let the rewards be bounded in [0, 1] again.
So action {2} is unsafe. Therefore safe oracle policy which first runs action
1 for C1n number of times for some C1 > 0. Then it runs the safe action 0
for C0n number of times (for some C0 > 0) such that it has enough safety
budget and then it runs action 2 for n(1− (C0 +C1)) number of times. Let
the variance of σr,(2)(0) = 0.001, σr,(2)(1) = 0.001 and σr,(2)(2) = 0.25.

The cost cumulative value over rounds for the algorithm for α = 1
4 is

given by

VcA = (C1n)(0.5 + α) + n(1 − C0 − C1)0 + (C0n)0.5

= (C1n) ·
3
4 + (C0n)

2
4 =

n

4 (3C1 + 2C0) .

Then to satisfy the safety budget we have to show that

VcA ⩾ n(1 − α)0.5
(a)
=⇒ n

4 (3C1 + 2C0) ⩾
3n
8

=⇒ 3C1 + 2C0 ⩾
3
2

Say we just want to satisfy the safety constraint, then setting C1 =
1
4 and

C0 =
3
8 in the above equation we can achieve that. Therefore we have that

Tn(1) = n
4 and Tn(0) = 3n

8 . This implies that Tn(2) = n − n
4 − 3n

8 = 3n
8 .
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Therefore we get that the loss of bk∗ is given by

Ln(π, bk∗) =
∑

a,Tn(a)>0

σr,(2)(a)

Tn(a)
=

8(0.001)2

3n +
4(0.001)2

n
+

8(0.25)2

3n

Now we calculate the loss of the optimal data collection algorithm follow-
ing the unconstrained b∗. Note that now T∗n(0) = 0.001

0.001+0.001+0.25n = n
252 ,

T∗n(1) = n
252 and T∗n(2) = 250n

252 . Then the loss of the optimal data collection
algorithm following b∗ is given by

L∗
n(π, b∗) =

∑
a,T∗

n(a)>0

σr,(2)(a)

T∗n(a)
=

252(0.001)2

n
+

252(0.001)2

n
+

252(0.25)2

250n

≈ 2
4000n +

15
n

.

It follows then that the regret scales as

Rn = Ln(π, bk∗) − L∗
n(π, b∗)

=
∑

a,Tn(a)>0

σr,(2)(a)

Tn(a)
−

∑
a,T∗

n(a)>0

σr,(2)(a)

T∗n(a)
= O

(
K

n

)
⩾ Rsafe

n = Õ(
K log(n)
n3/2 ).

Note that this regret rate holds for any C1 < C0 and we cannot shift any
more proportion to action {2}. Therefore the algorithm will choose the
sub-optimal safe action {0} more than the action that reduces the MSE (to
satisfy safety constraint) most resulting in a regret that scales as n−1. So
any algorithm (including the safe oracle algorithm) will not be able to
achieve the desired regret rate of Õ(n−3/2). The claim of the proposition
follows.

Remark C.3. (Tractability condition) Let b be any behavior policy that
minimizes MSE. However, running b only once is not enough to guarantee a
regret of Õ(n−3/2). Let b be run forKb episodes to guarantee a regret of Õ(n−3/2).
Note that Kb is the number of rounds in the bandit setting. Observe that the
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number of rounds (or episodes in case of MDP) Kb is behavior policy specific.
Case 1 (Two action bandits): Consider two action bandit setting such

that A = 2. Further, let π(a) = 1/A and the left action has a constraint-value
of C1 while the right action has a constraint-value of C2. Let the deterministic
baseline policy π0 always choose the left action, while the behavior policy b chooses
the right action. Note that b may or may not be b∗. Then to satisfy the safety
constraint (4.1) we need that

(n− Kb)C1 + KbC2 ⩾ (1 − α)nC1 =⇒ nC1 − KbC1 + KbC2 ⩾ nC1 − αnC1

=⇒ Kb(C1 − C2) ⩽ nC1α

=⇒ 1 −
C2

C1
⩽
nα

Kb

=⇒ Kb

α
(1 −

C2

C1
) ⩽ n

=⇒ n ⩾
Kb

α

(
1 −

C2

C1

)
The above inequality shows two things, (1) the lower bound to the budget n to
run the behavior policy b for Kb rounds and satisfy the safety constraint; (2) The
condition C1 > C2 has to be satisfied so that the RHS is positive.

Case 2 (General multi-armed bandits): Now generalizing this to A ⩾ 2
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we can show that the above condition can be modified into

(n− Kb)µ
c(0) + Kb min

a∈A\{0}
µc(a) ⩾ (1 − α)nµc(0)

=⇒ nµc(0) − Kbµc(0) + Kb min
a∈A\{0}

µc(a) ⩾ nµc(0) − αnµc(0)

=⇒ Kb(µ
c(0) − min

a∈A\{0}
µc(a)) ⩽ αnµc(0)

=⇒ 1 −
mina∈A\{0} µ

c(a)

µc(0) ⩽
αn

Kb

=⇒ Kb

α

(
1 −

mina∈A\{0} µ
c(a)

µc(0)

)
⩽ n

=⇒ n ⩾
Kb

α

(
1 −

mina∈A\{0} µ
c(a)

µc(0)

)
The above inequality shows two things, (1) the lower bound to the budget n to
run the behavior policy b for Kb rounds and satisfy the safety constraint for a
general Kb armed bandit; (2) The condition mina∈A\{0} µ

c(a) < µc(0) has to
be satisfied so that the RHS is positive.

Case 3 (Tabular MDP): DefineVb−

c (s1) as the value of the policy b− starting
from state s1. So this policy b− can be thought of as the worst possible policy that
can be followed by the agent during an episode. Let this policy be run for Kb−

episodes. Also, recall that Vπ0
c (s1) is the value of the baseline policy π0 starting

from state s1. It can easily shown following a similar line of argument as case 2
that we need a budget of

n ⩾
Kb−

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
.

Again the above inequality shows two things for a general Tree MDP: (1) the
lower bound to the budget n to run the behavior policy b− for Kb− episodes and
satisfy the safety constraint for a Tree MDP; (2) Vb−

c (s1) < V
π0
c (s1) so that the

RHS is positive.
Now observe that in the first two cases of the bandit setting the Vb−

c (s1) yields
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mina∈A\{0} µ
c(a). Therefore combining all three cases we can state the budget

n ⩾ Kb−

α

(
1 − Vb−

c (s1)

V
π0
c (s1)

)
. Now from (Carpentier and Munos, 2012; Mukherjee

et al., 2022a) we know that Kb− ⩾ Cσ(n−
√
n) where Cσ ∈ (0, 1] is an MDP

dependent parameter that depends on the reward variance of state-action pairs to
achieve a regret bound of Õ(n−3/2). We define the quantity Cσ = maxs,a

b∗(a|s)
M(s)

where b∗(a|s) and M(s) are defined in (4.4) and (4.5) respectively. Observe
that Cσ ∈ (0, 1). Then we have that

n ⩾
Kb−

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
=⇒ n ⩾

Cσ(n−
√
n)

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
=⇒ n ⩾

Cσn

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
−

√
n

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
=⇒ n

(
1 −

Cσ

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

))
+

√
n

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
⩾ 0

=⇒
√
n

(√
n−

Cσ
√
n

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
+

1
α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

))
⩾ 0.

This implies that

√
n−

Cσ
√
n

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
+

1
α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)
⩾ 0

=⇒
√
n

(
1 −

Cσ

α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

))
⩾ −

1
α

(
1 −

Vb−

c (s1)

Vπ0
c (s1)

)

=⇒
√
n ⩾

− 1
α

(
1 − Vb−

c (s1)

V
π0
c (s1)

)
(

1 − Cσ
α

(
1 − Vb−

c (s1)

V
π0
c (s1)

))
=⇒
√
n ⩾

1
α

(
1 − Vb−

c (s1)

V
π0
c (s1)

)
Cσ
α

(
1 − Vb−

c (s1)

V
π0
c (s1)

)
− 1

.

This yields the tractability condition.
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C.2 Tractable MDP and Lower Bounds
Some Definitions for proving Lower Bound: These definitions follow
similar definitions in Wagenmaker et al. (2022b). Define the Q-function
that satisfies the Bellman equation as

Qπℓ (s,a) = Rℓ(s,a) +
∑
s′

Pℓ (s
′ | s,a)Vπℓ+1 (s

′)

andQπL+1(s,a) = 0. Define the optimalQ-function asQπ∗
ℓ (s,a) := supπQπℓ (s,a),V

π∗
ℓ (s) :=

supπ Vπℓ (s), and let π⋆ denote an optimal policy. A policy π̂ is called ϵ-
optimal which satisfies the following

Vπ∗(s1) − V
π̂(s1) ⩽ ϵ

with probability greater than 1 − δ using as few episodes as possible. We
further define a few more notations for proving the lower bound. Define
the suboptimality gap as

∆ℓ(s,a) := Vπ∗
ℓ (s) −Qπ∗

ℓ (s,a).

such that ∆ℓ(s,a) denotes the suboptimality of taking action a in (s,h),
and then playing the optimal policy henceforth. Define the state-action
visitation distribution as:

wπℓ (s,a) := Pπ [sℓ = s,aℓ = a] , wπℓ (s) := Pπ [sℓ = s] .

Note that wπℓ (s,a) = πℓ(a|s)wπℓ (s). We denote the maximum reachability
of (s, ℓ) by

Wℓ(s) := sup
π

wπℓ (s).
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This is the maximum probability with which we could hope to reach (s, ℓ).
Define the best-policy gap-visitation complexity as C⋆(T). Finally, recall
that tree MDP is a subset of general MDPs which let us restate the following
lemmas on lower bound for unconstrained tree MDPs from Wagenmaker
et al. (2022b).

Lemma C.4. (Divergence Lemma, Restatement of Lemma 4.1 from Wa-
genmaker et al. (2022b)) Consider tree MDPs T and T′ with the same state
space S, actions space A, horizon L, and initial state distribution P0. Fix some
(s, ℓ) ∈ S × [L], and for any a ∈ A let νℓ(s,a) denote the law of the joint dis-
tribution of (s′,R) where s′ ∼ PT(· | s,a) and R ∼ RT(s,a). Define the law
ν′ℓ(s,a) analogously with respect to T′. Fix some policy π and let PT = Pνπ and
PT′ = Pν′π be the probability measures on T and T ′ induced by the τ-episode
interconnection of π and ν (respectively by π ′ and ν ′). For any almost-sure
stopping time τ with respect to filtration (Fτ),∑

s,a,h

ET [N
τ
ℓ (s,a)]KL (νℓ(s,a),ν′ℓ(s,a)) ⩾ sup

ξ∈Fτ

d (PT(ξ),PT′(ξ))

where d(x,y) = x log x
y
+ (1 − x) log 1−x

1−y and Nτℓ (s,a) denotes the number of
visits to (s,a, ℓ) in the τ episodes.

Lemma C.5. (Proposition 12 from Wagenmaker et al. (2022b) Fix some
tree MDP T. Then:

1. The set of valid state-action visitation distributions on T is convex.

2. For any valid state-action visitation distribution on T, there exists some
policy that realizes it.

Lemma C.6. (Restatement of Lemma F.3 from Wagenmaker et al. (2022b))
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In the tree MDP T, fix some ℓ̄ ∈ [L]. Then

C⋆(T) ⩽ inf
b

max
s,a

1
wb
ℓ̄
(s,a)∆ℓ(s,a)2 + max

s,ℓ

SAL

Wℓ(s)
.

is the complexity of the Tree MDP T.

Lemma C.7. (Proposition 4 from Wagenmaker et al. (2022b)) The follow-
ing bounds hold for any unconstrained tree MDP T:

1. C⋆(T) ⩽ L3SA
ϵ2

2. C⋆(T) ⩽
∑L
ℓ=1

∑
s,amin

{
1

Wℓ(s)∆ℓ(s,a)2 , Wℓ(s)
ϵ2

}
+ L2|OPT(ϵ)|

ϵ2

3. C⋆(T) ⩽
∑L
ℓ=1

∑
s,a

1
ϵmax{∆ℓ(s,a),ϵ} +

L2|OPT(ϵ)|
ϵ2 .

where, C⋆(T) is the complexity of the Tree MDP T. The second term inC⋆(T),L2|OPT(ϵ)|/ϵ2,
captures the complexity of ensuring that after eliminating ϵ/Wℓ(s)-suboptimal
actions, sufficient exploration is performed to guarantee the returned policy is
ϵ-optimal.

Lemma C.8. (Restatement of Theorem 5 in Carpentier and Munos (2012))
Let A ∈ N be a set of actions for a bandit setting. Let inf be the infimum taken
over all online sampling algorithms that reduce the MSE and sup represent the
supremum taken over all environments. Define the regret of the algorithm over
the target policy π as Rn := Ln(π) − L∗

n(π) where Ln(π) is the MSE of the
target policy following the algorithm. Then:

inf supE [Rn] ⩾ C
A1/3

n3/2 ,

where C is a numerical constant, and n is the total budget,

Lemma C.9. Define the regret of the algorithm over the target policy π as Rn :=

Ln(π, b) − L∗
n(π, b∗) where Ln(π, b) is the MSE of the target policy following
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Figure C.4: Tractable Tree MDPs T and T ′. The difference between the
two Tree MDPs is highlighted in the square box.

the algorithm and b∗ is the unconstrained oracle behavior policy. The reward
regret in tree MDP T is lower bounded by

inf supE [Rn] ⩾ Ω

(√
SAL2 log(1/δ)

n3/2

)
.

Proof. We prove this lemma in two steps. In the first step, we prove the
minimum number of episodes required by an ϵ-optimal policy b in tree
MDP T (fig. C.4) such that Vb∗(s1) − V

b(s1) ⩽ ϵ. Next in step 2 we show
that given this minimum number of episodes, what is the loss suffered by
b against b∗ at the end of episode K.

Step 1 (Minimum episodes): We consider the two tree MDPs T and
T ′ shown in Figure C.4. We will apply Theorem C.4 on our MDP, T,
and MDP T′ which is identical to T except in state (s2

2, 1) where we have
σ2(s2

2, 1) = (µ−∆)(1 − µ+∆) in T ′ and σ2(s2
1, 1) = (µ+ α)(1 − µ− α) for

T and some ∆ > 0. This yields a different b∗ for MDP T than b∗ for T ′.
Fix some ℓ̄ ∈ [L]. Since T and T′ are identical at all points but this one,
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we have∑
s,a,ℓ

ET [N
τ
ℓ (s,a)]KL (Bernoulli(µ− ∆), Bernoulli(µ+ α))

= ET
[
Nτℓ̄ (s,a)

]
KL (Bernoulli(µ− ∆), Bernoulli(µ+ α)) .

where, ET,ET ′ denotes the expectation over the data collected in tree MDP
T and T ′ respectively following policy b∗.

Let b∗ denote the optimal policy on T, and b denote the ϵ -optimal
policy by any other algorithm. Let the event ξ = {b = b∗}. Since we
assume algorithm is δ-correct, and since the optimal policies on T and T′

differ, we have PT(ξ) ⩾ 1 − δ and PT′(ξ) ⩽ δ. By Garivier and Kaufmann
(2016), we can then lower bound

d (PT(ξ),PT′(ξ)) ⩾ log 1
2.4δ

Thus, by Theorem C.4, we have shown that, for any (s,a),a ̸= b∗,ℓ̄(s),

ET
[
Nτℓ̄ (s,a)

]
⩾

1
KL (Bernoulli(µ− ∆), Bernoulli(µ+ α))

· log 1
2.4δ

For small α > 0, we can bound (see e.g. Lemma 2.7 of Tsybakov (2009))

KL (Bernoulli(µ− ∆), Bernoulli(µ+ α)) ⩽ 6(∆− α)2.

Taking α→ 0, we have

ET
[
Nτℓ̄ (s,a)

]
⩾

1
6∆2 · log 1

2.4δ .

We can write ET
[
Nτ
ℓ̄
(s,a)

]
= ET

[∑τ
k=1w

bk
ℓ̄
(s,a)

]
where bk denotes the

policy the algorithm played at episode k. Note that all state-visitation
distributions lie in a convex set in [0, 1]SA and that for any valid state-
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visitation distribution, there exists some policy that realizes it, by Theo-
rem C.5. By Caratheodory’s Theorem, it follows that there exists some set
of policies Π with |Π| ⩽ SA+ 1 such that, for any b and all s,a,wb

ℓ̄
(s,a) =∑

b′∈Π λb′wb′

ℓ̄
(s,a), for some λ ∈ △Π. Note that λ is a distribution over

the policies in Π. Letting λk denote this distribution satisfying the above
inequality for bk, it follows that

ET

[
τ∑
k=1

wbk
ℓ̄ (s,a)

]
= ET

[
τ∑
k=1

∑
b∈Π

λkbw
b
ℓ̄(s,a)

]

=
∑
b∈Π

ET

[
τ∑
k=1

λkb

]
wb
ℓ̄(s,a)

= ET[τ]
∑
b∈Π

ET
[∑τ

k=1 λ
k
b
]

ET[τ]
wℓ̄(s,a).

Note that
∑

b∈Π ET
[∑τ

k=1 λ
k
b
]
= ET

[∑τ
k=1

∑
b∈Π λ

k
b
]
= ET[τ] so it follows

that
(

ET[
∑τ
k=1 λ

k
b]

ET[τ]

)
b∈Π
∈ △Π. Thus, a δ-correct algorithm must satisfy, for

all s,a and some λ ∈ △Π,

ET[τ] ⩾
1

6∆2 ·
∑

b∈Π λbw
b
ℓ̄
(s,a)

· log 1
2.4δ .

Since the set of state visitation distributions is convex, and since for any
state-visitation distribution we can find some policy realizing that distri-
bution, for any λ ∈ △Π, it follows that there exists some b′ such that, for
all s,a,

∑
b∈Π λbw

b
ℓ̄
(s,a) = wb′

ℓ̄
(s,a). So, we need, for all s,a

ET[τ] ⩾
1

6∆2 ·wb
ℓ̄
(s,a)

· log 1
2.4δ .
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It follows that every δ-correct algorithm must satisfy

ET[τ] ⩾ inf
b

max
s,a

1
6∆2 ·wb

ℓ̄
(s,a)

· log 1
2.4δ ,

≳ C⋆(T) · log 1
2.4δ − max

s,ℓ

SAL

Wℓ(s)

from which the first inequality follows, and the second inequality follows
from Theorem C.6.

The second term in C⋆(T),L2|OPT(ϵ)|/ϵ2, captures the complexity of
ensuring that after eliminating ϵ/Wℓ(s)-suboptimal actions, sufficient
exploration is performed to guarantee the returned policy is ϵ-optimal.
Using Theorem C.7 we have that C⋆(T),L2|OPT(ϵ)|/ϵ2 will be no worse
than L3SA/ϵ2, it could be much better, if in the MDP the number of (s,a, ℓ)
with ∆ℓ(s,a) ≲ ϵ/Wℓ(s) is small (note that since ∆ℓ(s,a) ⩾ ∆min(s, ℓ) by
definition, OPT(ϵ) will only contain states for which the minimum non-
zero gap is less than ϵ/Wℓ(s) ). Wagenmaker et al. (2022b) obtains the
bounds on C⋆(T) in Theorem C.7, providing an interpretation of C⋆(T)

in terms of the maximum reachability, and illustrating C⋆(T) is no larger
than the minimax optimal complexity. This implies that

ET[τ] ≳ Ω

(
SAL2

ϵ2 log(1/δ)
)

.

Hence the VbK(s1
1) − V

b∗(s1
1) ⩽ ϵ for K ⩾

SAL2

ϵ2 log(1/δ).
Step 2 (Bound regret in T): In the T in Figure C.4 we now have

M(s1
1) =

√
2σ2

1 + σ
2
2 +
√

2σ2
2 + σ

2
1, M(s2

1) =M(s2
2) = σ1 + σ2

Define confidence interval βKL = L
√
SA log(SAL2/δ)/n. It can be shown
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using pointwise uncertainty estimation from Corollary 3 that

|σ̂K,1 − σ1| ⩽ β
K
L , |σ̂K,2 − σ2| ⩽ β

K
L (C.2)

holds with probability greater than 1 − δ, where the σ̂K,1, σ̂K,2 denote
the estimated variances after K episodes. Then the loss of the agnostic
algorithm at the end of the K-th episode is given by

LKn(π, b) =

√
2σ̂2
K,1 + σ̂

2
K,2 +

√
2σ̂2
K,2 + σ̂

2
K,1

n
(a)

⩾

√
2(σ2

1 − β
K
L ) + σ

2
2 − β

K
L +

√
2(σ2

2 − β
K
L ) + σ

2
1 − β

K
L

n

=

√
2σ2

1 + σ
2
2 − 3βKL +

√
2σ2

2 + σ
2
1 − 3βKL

n
(b)

⩾

√
2σ2

1 + σ
2
2 +
√

2σ2
2 + σ

2
1

n
− C

βKL
n

where, (a) follows from concentration inequality in (C.2), and (b) follows
for some appropriate constant C > 0. Then for K ⩾ SAL2

ϵ2 log(1/δ) (from
step 1) we have the total loss as

Ln(π, b) = LKn(π, b) ⩾
(√

2σ2
1 + σ

2
2 +
√

2σ2
2 + σ

2
1

n
−
βKL
n

)
SAL2

ϵ2 log(1/δ)

(a)

⩾

√
2σ2

1 + σ
2
2 +
√

2σ2
2 + σ

2
1

n︸ ︷︷ ︸
Ln(π,b∗)

+
βKL
n

Ln(π, b) − L∗
n(π, b∗)

(b)

⩾

√
SAL2 log(SAL2/δ)

n
√
K

= Ω

(√
SAL2 log(1/δ)

n3/2

)



379

where, (a) follows by first setting ϵ = 1/
√
n and then noting that(√

2σ2
1 + σ

2
2 +
√

2σ2
2 + σ

2
1 − β

K
L

)
(SAL2) log(1/δ)

⩾

√
2σ2

1 + σ
2
2 +
√

2σ2
2 + σ

2
1

n
+
βKL
n

.

Also note that Ln(π, b∗) =

√
2σ2

1 + σ
2
2 +
√

2σ2
2 + σ

2
1

n
. The (b) follows by

substituting the value of βKL . The claim of the lemma follows.

Theorem 1. (Lower Bound, formal) Let π(a|s) = 1
A

for each state s ∈ S.
Assume the MDP M is tractable under Assumption 6 and satisfies (4.7). Then
the reward regret is lower bounded by

E [Rn] = Ln(π, b) − L∗
n(π, bk∗) ⩾


Ω

(
max

{
A1/3

n3/2 ,
(
H2

∗,(1)A
2/3

n3/2

)})
, (MAB)

Ω

(
max

{√
SAL2

n3/2 ,
(
H2

∗,(1)SAL
2

n3/2

)})
(Tabular MDP)

where, ∆0 = |V
bk∗
c (s1

1) − V
π0
c (s1

1)| and H∗,(1) =
1

αV
π0
c (s1

1)
(αVπ0

c (s1
1) + ∆0) is the

hardness parameter.

Proof. We follow a reduction-based proof technique to prove this lower
bound (Yang et al., 2021b).

Step 1 (Reduction): First recall we have that the regret for any online
algorithm Alg that minimizes the MSE Ln(π) is given by Rn(Alg) =

Ln(π, b) − L∗
n(π, bk∗), where L∗

n(π, b) is the MSE of the oracle algorithm.
We also assume π(a) = 1/A for all a ∈ A, and σ(a) ⩾ 1

16 for all a.
Now consider any sequential decision-making problem A (for instance

a multi-armed bandit problem) such that there exists ξ ∈ R (a constant
solely depending on the sequential decision-making problem, e.g., the
number of actions in bandits, or state-action-horizon in tabular RL), an
instance of problem A where for the budget n large enough and any
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algorithm Alg we have from Theorem C.8 and Theorem C.9 that:

E
[
RA
n(Alg)

]
⩾

ξ

n3/2 , (C.3)

For instance, in the MAB case ξ = A1/3 withA the number of arms and
in tabular RL ξ = SAL2. Using this non-conservative (unconstraint) lower
bound, we show our lower bound for the safe setting for the problem A

with a baseline policy π0. We assume the MDP T ⊂ M where we run
the behavior policy bk∗ satisfies Assumption 6. This is required because
otherwise we will not be able to run the behavior policy a sufficient num-
ber of times to reach a regret bound of Õ(n−3/2)(see Proposition 1). To
do so, let’s consider any safe algorithm (that is to say it satisfies safety
constraint) noted as Algc. We assume this algorithms selects behavior
policies (bt)t∈[n] and let N0 denotes the set of episodes in {1, . . . ,K} where
Algc selects the safe policy π0. Let |N0| = N0 and ∆0 := |Vbk∗ − Vπ0

c |. Here
we assume the budget n is large such that n ⩾ SAL2/ϵ2 for some ϵ > 0
(see Theorem C.9) and

n ⩾

√
ξ

αVπ0
c (s1

1) · (αV
π0
c (s1

1) + ∆0)
+

ξ2

4 (αVπ0
c (s1

1) + ∆0)
2

=⇒ n2 ⩾
ξ

αVπ0
c (s1

1) · (αV
π0
c (s1

1) + ∆0)
+

ξ2

4 (αVπ0
c (s1

1) + ∆0)
2 .

=⇒ n ⩾
ξ

nαVπ0
c (s1

1) · (αV
π0
c (s1

1) + ∆0)
+

ξ2

4n (αVπ0
c (s1

1) + ∆0)
2

Step 2 (Loss estimate): Let L(N0) be the loss suffered in first N0

episodes. We now distinguish two cases:
(a) If E [L(N0)] ⩾ ξ

nαV
π0
c (s1

1)·(αV
π0
c (s1

1)+∆0)
, then the definition of the
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regret implies that:

E
[
RA
n(Alg)

]
= E [L(N0)] · ∆0 ⩾

ξ∆0

nαVπ0
c (s1

1) · (αV
π0
c (s1

1) + ∆0)
. (C.4)

(b) IfE [L(N0)] <
ξ

nαVπ0·(αVπ0
c (s1

1)+∆0)
, then let’s noteNC0 =

{
i1, i2, · · · , i|Nc0 |

}
the set of episodes where Algc does not execute the baseline policy π0.
Now consider the safety budget (similar to Definition 1 of Yang et al.
(2021b)) we have:

BNc0

(
Algc

)
= max
t∈Nc0

E
t∑
k=1

[
(1 − α)Vπ0

c (s1
1) − V

πt(s1
1)
]

= max
t∈Nc0

E
t∑
k=1

[
Vbk∗ (s1

1) − V
πt(s1

1) − αV
π0
c (s1

1) −
(
Vbk∗
c (s1

1) − V
π0
c (s1

1)
)]

= max
t∈Nc0

E
[
RA

NC0
(Ac) (t)

]
−
(
αVπ0

c (s1
1) + ∆0

)
t,

where ∆0 = V
bk∗
c (s1

1) − V
π0
c (s1

1) is the difference between the constraint
value of the optimal policy and the baseline policy and E

[
R
NC0
A (Ac) (t)

]
is

the regret incurred by the episodes {ik}k∈[t]. Therefore, for any t ∈ [|Tc0 |],
by (C.3) we have that there exists an instance u (for instance in a bandit
problemu is the means of each arm) ofA such thatE

[
R
NC0
A (Ac) (t)

]
⩾

ξ

t3/2 .

Let t0 =
ξ2

4n(αVπ0
c (s1

1)+∆0)
2 , then there exists an instance such that

BNC0

(
Algc

)
⩾

ξ

t
3/2
0

−
(
αVπ0

c (s1
1) + ∆0

)
t0

=
4
(
αVπ0

c (s1
1) + ∆0

)3
n3/2

ξ2 −
ξ2

4(αVπ0
c (s1

1) + ∆0)

1
n2

(a)

≳
(αVπ0

c (s1
1) + ∆0)

2ξ2

n3/2 .

where, (a) follows as n3/2 − n−2 ⩾ n−3/2. Combining the safety condition
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in eq. (4.1), we have

E [L(N0)] ⩾
BN0

(
Algc

)
αVπ0

c (s1
1)

≳

(
αVπ0

c (s1
1) + ∆0

)2
ξ2

αVπ0
c (s1

1)n
3/2 .

By the same derivation of eq. (C.4), we have

E
[
RA
n(Alg)

]
≳

ξ2∆0

nαVπ0
c (s1

1) · (αV
π0
c (s1

1) + ∆0)

(a)

⩾
ξ2

n3/2αVπ0
c (s1

1) · (αV
π0
c (s1

1) + ∆0)
.

(C.5)

where, (a) follows for ∆0 ⩾ 1/
√
n. Combining eq. (C.3), C.4, and C.5 we

can show that

E
[
RA
n(Alg)

]
≳ max

{
ξ

n3/2 , (αV
π0
c (s1

1) + ∆0)
2ξ2

(αVπ0
c (s1

1))
2n3/2

}
.

Step 3 (Combine with MAB:) Now considering that safe oracle bk∗ is
also an online algorithm Alg, we can drop the notation. Then for multi-
armed bandits, by Theorem C.8, we choose ξ = A1/3. Then we have

E [Rn] ≳ max
{
A1/3

n3/2 ,
(
αVπ0

c (s1
1) + ∆0

)2

(αVπ0
c (s1

1))
2

(
A2/3

n3/2

)}
(a)
= min

{
A1/3

n3/2 ,
(
H2

∗,(1)A
2/3

n3/2

)}
.

where, (a) follows from the problem complexity parameterH∗,(1) =
1

αV
π0
c (s1

1)
(αVπ0

c (s1
1)+

∆0) when π(a) = 1/A and σ(a) ⩾ 1/16 for the bandit setting.
Step 4 (Combine with tabular RL:) For tabular RL, by Theorem C.9,
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we choose ξ =
√
SAL2. Then we have

E [Rn] ≳ max
{√

SAL2

n3/2 ,
(
αVπ0

c (s1
1) + ∆0

)2

(αVπ0
c (s1

1))
2

(
SAL2

n3/2

)}
(a)
= min

{√
SAL2

n3/2 ,
(
H2

∗,(1)SAL
2

n3/2

)}
.

where, (a) follows from the problem complexity parameter

H∗,(1) =
1

αVπ0
c (s1

1)
(αVπ0

c (s1
1) + ∆0)

when π(a) = 1/A and σ(a) ⩾ 1/16. This concludes the proof.

Remark C.10. (Comparing regret) Observe that the regret lower bound is
proved on R ′

n = Ln(π) −L∗
n(π) which assumes that we can exactly solve for the

oracle sampling solution. However, L∗
n(π) in Rn is an upper bound to L∗

n(π)

and so we cannot directly compare Rn with R ′
n. However, since R ′

n gives a lower
bound by directly solving for the oracle solution, we conjecture that this is the
lower bound to Rn. Proving this conjecture we leave it to future works.

C.3 Proof of Tree Agnostic MSE
Theorem 2. (formal) Let Assumption 6 hold. Then the MSE of the SaVeR for

n
log(SAn(n+1)/δ) ⩾ 32(LSA2)2 + SA

mins,a∆c,(2)(s,a) +
1

4H2
∗,(2)

is bounded by

Ln(π, b̂k) ⩽M
2(s1

1)

n
+

8AM2(s1
1)

n2 +
16A2M2(s1

1)

n3

+
M2(s1

1)

n

(
32MLSA+H∗,(2)

)2
+ 2

n∑
t=1

2η+ 4η2

n2

+O

(
(2η+ 4η2)(LSA2)2H2

∗,(2)M
2
√

log(SAn(n+ 1)/δ)

mins bk,(3/2)
∗,min (s)n3/2

)
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with probability (1−δ). TheM =
∑L
ℓ=1

∑
sℓj
M(sℓj), andH∗,(2) =

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j)

is the problem complexity parameter. The total predicted constraint violations is
bounded by

Cn(π, b̂k) ⩽
H∗,(2)

2
n

Mmin
+ 16LSA2

+O

(
(2η+ 4η2)(LSA2)2H2

∗,(2)M
2
√

log(SAn(n+ 1)/δ)

mins bk,(3/2)
∗,min (s)n1/2

)

with probability (1 − δ), whereMmin := minsM(s).

Proof. Step 1 (Sampling rule): First note that agnostic SaVeR samples by
the following rule

Play bk =


πx if Ẑk−1 ⩾ 0,k ⩽

√
K

b̂k if Ẑk−1 ⩾ 0,k >
√
K

π0 if Ẑk−1 < 0

(C.6)

where, Ẑk−1
L :=

∑k−1
k ′=1(Y

bk ′
c,L (s

1
1) − β

k ′

L (s,a)) − (1 − α)(k − 1)Vπ0
c (s1

1) is the
safety budget till the k-th episode.

Step 2 (MSE Decomposition): Now recall that the agnostic algorithm
does not know the variances and the means. We define the good cost event
when the oracle has a good estimate of the cost mean. This is stated as
follows:

ξc,K :=
⋂

1⩽k⩽K,
1⩽a⩽A,1⩽s⩽S

{∣∣µ̂kc,L(s,a) − µc(s,a)
∣∣ ⩽ (2η+ 4η2)L

√
log(SAn(n+ 1)/δ)

2TkL (s,a)

}

(C.7)

where, n = KL and K is the number of episodes and L is the length of
horizon of each episode. The exploration policy πx results in a good
constraint estimate of state-action tuples. This is shown in Corollary 4. We
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define the good variance event as

ξv,K :=
⋂

1⩽k⩽K,
1⩽a⩽A,1⩽s⩽S

{
|σ̂kL(s,a) − σ(s,a)| ⩽ (2η+ 4η2)L

√
log(SAn(n+ 1)/δ)

2TkL (s,a)

}
.

(C.8)

We define the safety budget event

ξZ,K :=
⋂

1⩽k⩽K

{
Ẑk ⩾ 0

}
. (C.9)

Using the definition of MSE, and Theorem C.1 we can show that

ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}

]
⩽

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

+ γ2
∑
a

π2(a|s1
1)
∑
s2
j

P(s2
j |s

1
1,a)Var[Yn(s2

j)]E[TKL (s2
j ,a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K ∩ I{ξv,K}} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
·

E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}] (C.10)

which implies that SaVeR does not need to know the reward means µ(s,a).
Hence, the MSE of SaVeR is bounded by
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Ln(π) ⩽ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K} ∩ ξv,K

]
︸ ︷︷ ︸

Part A, Ẑn ⩾ 0, safety event holds

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCc,K}

]
︸ ︷︷ ︸

Part C, Safety event does not hold

+ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCv,K}

]
︸ ︷︷ ︸

Part D, Variance event does not hold

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
·

E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K}]

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCc,K}

]
︸ ︷︷ ︸

Part C, Safety event does not hold

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCv,K}

]
︸ ︷︷ ︸

Part D, Variance event does not hold

.

Divide the total budget n into two parts, nf when
∑k
j=1 I{Ẑj ⩾ 0} is true,

then b∗ or πx is run. Hence define

nf :=

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a ′=1

E[Tkℓ (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}].

The other part consist ofnu = n−nf number of samples when
∑k
j=1 I{Ẑk <
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0} and only π0 is run. Hence we define,

nu =

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a ′=1

E[Tkℓ (sℓj ,a ′)I{ξCZ,K}].

Step 3 (Sampling of SaVeR for Ẑk ⩾ 0): First note that when Ẑk ⩾ 0
the SaVeR samples at episodek and round ℓ+1 the actionargmaxaUkℓ+1(s

ℓ+1
i ,a)

where

Ukℓ (s
ℓ
i,a) :=

b̂kℓ (a|s
ℓ
i)

Tkℓ (s
ℓ
i,a)

⩽
π(a|sℓi)

Tkℓ (s
ℓ
i,a)

(
σ(sℓi,a) + (2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2Tkℓ (sℓi,a)

+ γ2
∑
a ′

π(a ′|sℓi)
∑
sℓ+1
j

P(sℓ+1
j |sℓi|a

′)M̂(sℓ+1
j )

︸ ︷︷ ︸
B(sℓi)

)
.

(C.11)

Let ℓ+ 1 > 2SA be the time at which a given state-action (sℓi,p ′) is visited
for the last time, i.e., Tkℓ (p ′) = TKL (p

′)− 1 and Tkℓ+1(p
′) = TKL (p

′). Note that
as n = KL ⩾ 4SA, there is at least one state-action pair (sℓi,p ′) such that
this happens, i.e. such that it is visited after the initialization phase. Note
that under Assumption 6 it is possible to visit each (s,a) atleast once. Since
the SaVeR chooses to visit (sℓi,p ′) at time ℓ+1, we have for any state-action
pair (sℓi,p ′)

Ukℓ+1(s
ℓ+1
i ,p) ⩽ Ukℓ+1(s

ℓ+1
i ,p ′). (C.12)

From (C.11) and using the fact that Tkℓ (sℓi,p ′) = TKL (s
ℓ
i,p ′) − 1, we can
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show that

Ukℓ+1(s
ℓ+1
i ,p ′) ⩽

b∗(p
′|sℓ+1
i )

Tkt (s
ℓ+1
i ,p ′)

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2Tkt (sℓ+1
i ,p ′) − 1

+ B(sℓ+1
i )

)

=
b∗(p

′|sℓ+1
i )

TKL (s
ℓ+1
i ,p ′) − 1

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2TKL (sℓ+1
i ,p ′) − 1

+ B(sℓ+1
i )

)
.

(C.13)

Also note that

Ukℓ+1(s
ℓ+1
i ,p) = b∗(p|s

ℓ+1
i )

Tkt (s
ℓ+1
i ,p)

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2Tkt (sℓ+1
i ,p) − 1

+ B(sℓ+1
i )

)
(a)

⩾
b∗(p|s

ℓ+1
i )

TKL (s
ℓ+1
i ,p)

. (C.14)

where, (a) follows as Tt(p) ⩽ TKL (p, sℓ+1
i ) (i.e., the number of times p has

been visited can only increase after time ℓ). Combining (C.12), (C.13),
(C.14) we can show that for any action p:

b∗(p|s
ℓ+1
i )

TKL (p, sℓ+1
i )

⩽
b∗(p

′|sℓ+1
i )

TKL (p
′, sℓ+1
i ) − 1

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2TKL (sℓ+1
i ,p ′) − 1

+ B(sℓ+1
i )

)
.

(C.15)

Note that in the above equation, there is no dependency on ℓ, and thus, the
probability that (C.15) holds for any (sℓ+1

i ,p) and for any (sℓ+1
i ,p ′) such

that action (sℓ+1
i ,p ′) is visited after the initialization phase, i.e., such that

TKL (s
ℓ+1
i ,p ′) > 2 depends on the probability of event ξZ,n.

Step 4. ((Lower bound on TKL (sℓi,p) for Ẑk ⩾ 0): If a state-action tuple
(sℓi,p) is less visited compared to its optimal allocation without taking into
account the initialization phase, i.e., TKL (sℓi,p) − 2 < b(p|sℓi)(n− 2A), then
from the constraint

∑
p ′

(
TKL (s,p ′) − 2

)
= n − 2SA and the definition of

the optimal allocation, we deduce that there exist at least another state-
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action tuple sℓi,p ′ that is over-visited compared to its optimal allocation
without taking into account the initialization phase, i.e., TKL (sℓi,p ′) − 2 >
b(sℓi,p ′)(n− 2A). Note that for this action, TKL (sℓi,p ′) − 2 > b∗(p

′|sℓi)(n−

2SA) ⩾ 0, so we know that this specific action is taken at least once after
the initialization phase and that it satisfies (C.15). Recall that we have
definedM(sℓi) =

∑
a π(a|s

ℓ
i)σ(s

ℓ
i,a). Further defineM =

∑L
ℓ=1

∑
sℓi
M(sℓi).

Using the definition of the optimal allocation T∗,K
L (sℓi,p ′) = nf

b∗(p
′|sℓi)

M(sℓi)
, and

the fact that TKL (sℓi,p ′) ⩾ b∗(p
′|sℓi)(nf − 2SA) + 2, (C.15) may be written

as for any state-action tuple (sℓi,p)

b∗(p|s
ℓ
i)

TKL (s
ℓ
i,p)

⩽
b∗(p

′|sℓi)

T∗,K
L (p ′, sℓi)

nf

(nf − 2SA)

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2TKL (sℓ+1
i ,p ′) − 1

+ B(sℓ+1
i )

)

⩽
M(sℓi)

nf
+

4SAM(sℓi)

n2
f

+
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

b3/2
∗,min(s

ℓ
i)n

3/2
f

(C.16)

because nf ⩾ 4SA. By rearranging (C.16), we obtain the lower bound on
TKL (s

ℓ
i,p) :

TKL (s
ℓ
i,p) ⩾

b∗(p|s
ℓ
i)

M(sℓi)

nf
+

4SAM(sℓi)

n2
f

+
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

b3/2
∗,min(s

ℓ
i)n

3/2
f

(a)

⩾ T∗,K
L (sℓi,p) −

(2η+ 4η2)b∗(p|s
ℓ
i)
√

log(SAn(n+ 1)/δ)
M(sℓi)b

3/2
∗,min(s

ℓ
i)n

3/2
f

− 4Ab∗(p|s
ℓ
i),

(C.17)

where in (a) we use 1/(1 + x) ⩾ 1 − x (for x > −1 ). Note that the lower
bound holds on ξc,K for any state-action (sℓi,p).

Step 5. (Upper bound on TKL (sℓi,p) for Ẑk ⩾ 0): Now using (C.17) and
the fact that nf is given by

∑L
ℓ=1

∑
sℓj

∑A
a ′=1 E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K} ∩
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I{ξv,K}] = nf, we obtain

TKL (s
ℓ
i,p) = nf −

∑
p ′ ̸=p

TKL (s
ℓ
i,p ′) ⩽

nf − ∑
p ′ ̸=p

T∗,K
L (sℓi,p ′)


+

∑
p ′ ̸=p

(
(2η+ 4η2)b∗(p

′|sℓi)
√

log(SAn(n+ 1)/δ)
M(sℓi)b

3/2
∗,min(s

ℓ
i)n

3/2
f

+ 4Ab∗(p
′|sℓi)

)
.

Now since
∑
p ′ ̸=p b∗(p

′|sℓi) ⩽ 1 we can show that

TKL (s
ℓ
i,p) ⩽ T∗,K

L (sℓi,p) +
(2η+ 4η2)b∗(p|s

ℓ
i)
√

log(SAn(n+ 1)/δ)
M(sℓi)b

3/2
∗,min(s

ℓ
i)n

3/2
f

+ 4A.

(C.18)
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Step 6 (Bound part A): We now bound the part A using (C.16)

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
·

E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K}]

(a)

⩽

(
M(s1

1)

nf
+

4SAM(s1
1)

n2
f

+
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

b3/2
∗,min(p|s

ℓ
i)n

3/2
f

)2

nf

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)·

(
M(sℓj)

nf
+

4SAM(sℓj)

n2
f

+
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

b3/2
∗,min(p|s

ℓ
i)n

3/2
f

)2

nf

=
M2(s1

1)

nf
+

8AM2(s1
1)

n2
f

+
16A2M2(s1

1)

n3
f

+O

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

b3/2
∗,min(p|s

ℓ
i)n

3/2
f

)

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

(
M2(sℓj)

nf
+

8AM2(sℓj)

n2
f

+
16A2M2(sℓj)

n3
f

+O

(
(2η+ 4η2)

√
log(SAn(n+ 1)/δ)

b3/2
∗,min(p|s

ℓ
j)n

3/2
f

))

where, in (a) follows from the definition ofM(s) and nf.
Step 7 (Upper Bound to Constraint Violation): In this step we bound

the quantity Cn(π) =
∑k
j=1 I{Ẑj < 0, bj ∈ {b̂k,π0}}. Define the number of

times the policy b∗ is played till episode k is Tk(b∗) and the number of
times the baseline policy is played is given by Tk(π0). Observe thatCn(π) =∑k
j=1 I{Ẑj < 0, bj ∈ {b̂k,π0}} = TK(π0)I{ξCZ,K} as when the constraint are
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violated policy π0 is sampled. Let

τ = max
{
k ⩽ K and nf ⩾

log(SAn(n+ 1)/δ)
mins,a∆c,α,(2)(s,a) | bk = π0

}
be the last episode in which the baseline policy is played. We will define
formally the gap ∆c,α,(2)(s,a) later. Observe that the constraint violation
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can be re-stated as follows:

τ∑
k=1

Ycbk(s
1
1) :=

τ∑
k=1

∑
a

bk(a|s1
1)

µ̂c,k
L (s1,a) +

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s

2
j)


< (1 − α)τVcπ0

(s1
1)

=⇒
τ∑
k=1

∑
a

bk(a|s1
1)

µ̂c,k
L

(s1
1,a) +

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)

 < (1 − α)τVcπ0
(s1

1)

(a)
=⇒

τ∑
k=1

∑
a

bk(a|s1
1)

µ̂c,k
L

(s1
1,a) +

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)


< (1 − α)

τ∑
k=1

π0(0|s1
1)

µc(s1
1, 0) +

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j)


=⇒

τ∑
k=1

∑
a

TkL (s
1
1,a)

µ̂c,k
L

(s1
1,a)+

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)


< (1 − α)

τ∑
k=1

TkL (s
1
1,a)

µc(s1
1, 0)+

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j)


(b)
=⇒

∑
a

TτL (s
1
1,a)µ̂c,τ

L
(s1

1,a)︸ ︷︷ ︸
Part A

+
∑
a

TτL (s
1
1,a)

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)

< (1 − α)
∑
a

TτL (s
1
1, 0)µc(s1

1, 0)︸ ︷︷ ︸
Part B

+(1 − α)TτL (s
1
1, 0)

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j).

(C.19)

Comparing Part A and Part B for level ℓ = 1 we observe that the constraint
violation must satisfy∑

a

TτL (s
1
1,a)µ̂c,τ

L
(s1

1,a) < (1 − α)TτL (s
1
1, 0)µc(s1

1, 0)
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which can be reduced as follows

Tτ−1
L (s1

1, 0) ⩽ 1
αµc(s1

1, 0)

(
1 +

A∑
a=1

N(s1
1,a)

)
.

where ∆c,α(s1
1,a) := (1 − α)µc(s1

1, 0) − µc(s1
1,a) and

N(s1
1,a) := Tτ−1

L (s1
1,a) ·

(
(1 − α)µc(s1

1, 0) − µc(s1
1,a)

+c1

√
log(An(n+ 1)/δ)/Tτ−1

L (s1
1,a)

)
= ∆c,α(s1

1,a)Tτ−1
L (s1

1,a) + c1

√
log(An(n+ 1)/δ)Tτ−1
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is a bound on the decrease in Ẑτ in the first τ− 1 rounds due to choosing
action a in s1

1. We will now bound N(s1
1,a) for each a. Now observe
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.

The first case is ∆c,α(s1
1,a) > 0, i.e. ∆c(s1

1,a) > ∆c(0) + αµc(0). These are
the unsafe actions as ∆c,α(s1
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from (C.18)
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Plugging this back in N(s1
1,a) we get
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where, (a) follows for nf ⩾ log(SAn(n+1)/δ)
mina∆c,α,(2)(s1

1,a) . The other case is ∆c,α(s1
1,a) <
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(C.22)

where, (a) follows by using ax2 + bx ⩽ −b2/4a for a < 0, and (b) follows
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as nf ⩾ log(An(n+1)/δ)
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Plugging everything back in (C.22), we get
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It follows then that for the state s1
1
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where
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For an arbitrary level ℓ ∈ [L], we can show using (C.19) that the constraint
violation must satisfy
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=⇒
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(C.25)

where, (a) follows as µ(s,a) ∈ (0, 1] for all s,a and using (C.17) and
(C.18). Summing over all states sℓj till level Lwe can show that
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where, in (a)we defineMmin = minsM(s), andH∗,(2) =
∑L
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∑
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and (b) follows by setting nf = n− nu. Finally, observe that 16LSA2 does
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decreases with n.
Step 8 (Lower Bound to Constraint Violation): For the lower bound

to the constraint we equate Equation (C.19) to 0 and show that∑
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where, (a) follows from (C.17). Then we can show that
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Similarly for any arbitrary level ℓ ∈ [L] following the same way as step 7
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Finally summing over all states sℓj and level Lwe can show that
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(C.27)

Again, observe that 16LSA2 does not depend on the episode K.
Step 9 (Bound Part B): Then from (C.27) we can show that
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where, (a) follows for 1/(x − c) ⩽ x + c for x2 ⩾ 1 + c2 and c > 0. The
(b) follows for H∗,(2) =
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follows then by setting nf = n− nu that
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where, (a) follows from Theorem C.1, (b) follows from definition of H∗,(2),
and (c) follows from (C.26).

Step 10 (Combine everything): Combining everything from step 5,
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step 8 and setting δ = 1/n2 we can show that the MSE of SaVeRscales as
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where, (a) follows as ED
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1
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]
⩽ 2η+4η2 and using

the low error probability of the cost event from Theorem C.14 and variance
event from Corollary 3. The claim of the theorem follows.

C.4 Proof of Tree Oracle MSE
Proposition 2. (formal) Let Assumption 6 hold. Then the MSE of the oracle
for n

log(SAn(n+1)/δ) ⩾ 32(LSA2)2 + SA
mins,a∆c,(2)(s,a) +

1
4H2

∗,(2)
is bounded by

Ln(π, bk∗) ⩽
M2(s1

1)

n
+

8AM2(s1
1)

n2 +
16A2M2(s1

1)

n3

+
M2(s1

1)

n

(
32MLSA2 +H∗,(2)

)2
+ 2

n∑
t=1

2η+ 4η2

n2 +
2
n

with probability (1−δ). TheM =
∑L
ℓ=1

∑
sℓj
M(sℓj), andH∗,(2) =

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j)

is the problem complexity parameter. The total predicted constraint violations is
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bounded by

C∗
n(π, bk∗) ⩽

H∗,(2)

2
n

Mmin
+ 16LSA2

with probability (1 − δ), whereMmin := minsM(s).

Proof. Step 1 (Sampling rule): We follow the proof technique of Theo-
rem 2. Note that the oracle tree algorithm knows the variances of reward
and constraints values (but does not know the mean of either) and samples
by the following rule

bk∗ =


πx, if Ẑk−1

L ⩾ 0,k ⩽
√
K

b∗, if Ẑk−1
L ⩾ 0,k >

√
K

π0 if Ẑk−1
L < 0

. (C.29)

where, Ẑk−1
L :=

∑k−1
k ′=1(Y

bk ′
c,L (s

1
1) − β

k ′

L (s,a)) − (1 − α)(k − 1)Vπ0
c (s1

1) is the
safety budget till the k-th episode.

Step 2 (MSE Decomposition): Now recall that the oracle knows the
variances but does not know the means (constraint and reward). We
define the good constraint event when the oracle has a good estimate of
the constraint mean. This is stated as follows:

ξc,K :=
⋂

1⩽k⩽K,
1⩽a⩽A,1⩽s⩽S

{∣∣µ̂c,k
L (s,a) − µc(s,a)

∣∣ ⩽ (2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2TkL (s,a)

}

(C.30)

where, n = KL and K is the number of episodes and L is the length of
horizon of each episode. Define c1 = 2η+ 4η2.

The exploration policy πe results in a good constraint estimate of state-
action tuples. This is shown in Corollary 4.

We also define the safety budget event ξZ,K :=
⋂

1⩽k⩽K

{
Ẑk ⩾ 0

}
. Now
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using Theorem C.1 we can show that

ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K}

]
⩽

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
·

E[TKL (s1
1,a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s1
1)
∑
s2
j

P(s2
j |s

1
1,a)Var[Yn(s2

j)]E[TKL (s2
j ,a)I{ξZ,K} ∩ I{ξc,K}]

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
·

E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K}]

which implies that the oracle does not need to know the reward means
µ(a). Hence, Using the definition of MSE we can show that the MSE of
oracle is bounded by

Ln(π) ⩽ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K}

]
︸ ︷︷ ︸

Part A, Ẑn ⩾ 0, safety event holds

+ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCc,K}

]
︸ ︷︷ ︸

Part C, Safety event does not hold

⩽
∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
·

E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K}]

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCc,K}

]
︸ ︷︷ ︸

Part C, Safety event does not hold
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Divide the total budget n into two parts, nf when
∑k
j=1 I{Ẑj ⩾ 0} is true,

then b∗ is run. Hence define

nf :=

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a ′=1

E[Tkℓ (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K}].

The other part consist ofnu = n−nf number of samples when
∑k
j=1 I{Ẑk <

0} and only π0 is run. Hence we define,

nu =

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a ′=1

E[Tkℓ (sℓj ,a ′)I{ξCZ,K}].

Step 3 (Sampling of oracle for an episode k when Ẑk ⩾ 0): First note
that when Ẑk ⩾ 0 the oracle samples at episode k according to the policy
b∗. The following the same steps as in step 3 of Theorem 2 we can show
that. At episode k, time ℓ+ 1, the b∗ samples the state-action tuple, action
argmaxaU

k
ℓ+1(s

ℓ+1
i ,a) where

Ukℓ (s
ℓ
i,a) :=

b∗,ℓ(a|s
ℓ
i)

Tkℓ (s
ℓ
i,a)

(C.31)

Let ℓ+ 1 > 2SA be the time at which a given state-action (sℓi,p ′) is visited
for the last time, i.e., Tkℓ (p ′) = TKL (p

′) − 1 and Tkℓ+1(p
′) = TKL (p

′). Note
that as n = KL ⩾ 4SA, there is at least one state-action pair (sℓi,p ′) such
that this happens, i.e. such that it is visited after the initialization phase.
Since the oracle chooses to pull visit (sℓi,p ′) at time ℓ+ 1, we have for any
state-action pair (sℓi,p ′)

Ukℓ+1(s
ℓ+1
i ,p) ⩽ Ukℓ+1(s

ℓ+1
i ,p ′). (C.32)

From (C.31) and using the fact that Tkℓ (sℓi,p ′) = TKL (s
ℓ
i,p ′) − 1, we can



407

show that

Ukℓ+1(s
ℓ+1
i ,p ′) ⩽

b∗(p
′|sℓ+1
i )

Tkt (s
ℓ+1
i ,p ′)

=
b∗(p

′|sℓ+1
i )

TKL (s
ℓ+1
i ,p ′) − 1

(C.33)

Also note that

Ukℓ+1(s
ℓ+1
i ,p) = b∗(p|s

ℓ+1
i )

Tkt (s
ℓ+1
i ,p)

(a)

⩾
b∗(p|s

ℓ+1
i )

TKL (s
ℓ+1
i ,p)

. (C.34)

where, (a) follows as Tt(p) ⩽ TKL (p, sℓ+1
i ) (i.e., the number of times p has

been sampled can only increase after time ℓ). Combining (C.32), (C.33),
(C.34) we can show that for any action p:

b∗(p|s
ℓ+1
i )

TKL (p, sℓ+1
i )

⩽
b∗(p

′|sℓ+1
i )

TKL (p
′, sℓ+1
i ) − 1

(C.35)

Note that in the above equation, there is no dependency on ℓ, and thus, the
probability that (C.35) holds for any (sℓ+1

i ,p) and for any (sℓ+1
i ,p ′) such

that state-action (sℓ+1
i ,p ′) is visited after the initialization phase, i.e., such

that TKL (sℓ+1
i ,p ′) > 2 depends on the probability of event ξZ,n.

Step 4. (Lower bound on TKL (sℓi,p) for Ẑk ⩾ 0): If a state-action tuple
sℓi,p,p is under-pulled compared to its optimal allocation without taking
into account the initialization phase, i.e., TKL (sℓi,p) − 2 < b(p|sℓi)(n− 2A),
then from the constraint

∑
p ′

(
TKL (s,p ′) − 2

)
= n− 2SA and the definition

of the optimal allocation, we deduce that there exists at least another state-
action tuple sℓi,p ′ that is over-visited compared to its optimal allocation
without taking into account the initialization phase, i.e., TKL (sℓi,p ′) − 2 >
b(sℓi,p ′)(n− 2SA). Note that for this action, TKL (sℓi,p ′)− 2 > b∗(p

′|sℓi)(n−

2SA) ⩾ 0, so we know that this specific action is pulled at least once after
the initialization phase and that it satisfies (C.35). Recall that we have
definedM(sℓi) =

∑
a π(a|s

ℓ
i)σ(s

ℓ
i,a). Further defineM =

∑L
ℓ=1

∑
sℓi
M(sℓi).

Using the definition of the optimal allocation T∗,K
L (sℓi,p ′) = nf

b∗(p
′|sℓi)

M(sℓi)
, and
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the fact that TKL (sℓi,p ′) ⩾ b∗(p
′|sℓi)(nf − 2SA) + 2, (C.35) may be written

as for any state-action tuple (sℓi,p)

b∗(p|s
ℓ
i)

TKL (s
ℓ
i,p)

⩽
b∗(p

′|sℓi)

T∗,K
L (p ′, sℓi)

nf

(nf − 2SA) ⩽
M(sℓi)

nf
+

4AM(sℓi)

n2
f

(C.36)

because nf ⩾ 4SA. By rearranging (C.36), we obtain the lower bound on
TKL (s

ℓ
i,p) :

TKL (s
ℓ
i,p) ⩾

b∗(p|s
ℓ
i)

M(sℓi)

nf
+

4AM(sℓi)

n2
f

=
b∗(p|s

ℓ
i)

M(sℓi)

nf

(
1 + 4A

nf

) (a)

⩾ T∗,K
L (sℓi,p) − 4Ab∗(p|s

ℓ
i),

(C.37)

where in (a) we use 1/(1 + x) ⩾ 1 − x (for x > −1 ). Note that the lower
bound holds on ξc,K for any action p.

Step 5. (Upper bound on TKL (sℓi,p) for Ẑk ⩾ 0): Now using (C.37) and
the fact that nf is given by

∑L
ℓ=1

∑
sℓj

∑A
a ′=1 E[TKL (sℓj ,a ′)I{ξZ,K}∩ I{ξc,K}] =

nf, we obtain

TKL (s
ℓ
i,p) = nf −

∑
p ′ ̸=p

TKL (s
ℓ
i,p ′) ⩽

(
nf −

∑
p ′ ̸=p

T∗,K
L (sℓi,p ′)

)
+

∑
p ′ ̸=p

4Ab∗(p
′|sℓi).

Now since
∑
p ′ ̸=p b∗(p

′|sℓi) ⩽ 1 we can show that

TKL (s
ℓ
i,p) ⩽ T∗,K

L (sℓi,p) + 4A. (C.38)
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Step 6 (Bound part A): We now bound the part A using (C.36)

∑
a

π2(a|s1
1)

[
σ2(s1

1,a)
T
(2),K
L (s1

1,a)

]
E[TKL (s1

1,a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

∑
a ′

π2(a ′|sℓj)

[
σ2(sℓj ,a ′)

T
(2),K
L (sℓj ,a ′)

]
·

E[TKL (sℓj ,a ′)I{ξZ,K} ∩ I{ξc,K}]

(a)

⩽

(
M(s1

1)

nf
+

4AM(s1
1)

n2
f

)2

nf

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

(
M(sℓj)

nf
+

4AM(sℓj)

n2
f

)2

nf

=
M2(s1

1)

nf
+

8AM2(s1
1)

n2
f

+
16A2M2(s1

1)

n3
f

+ γ2
∑
a

π2(a|s1
1)

L∑
ℓ=2

∑
sℓj

P(sℓj |s
1
1,a)

(
M2(sℓj)

nf
+

8AM2(sℓj)

n2
f

+
16A2M2(sℓj)

n3
f

)

where, in (a) follows from the definition ofM(s) and nf.
Step 7 (Upper bound to Constraint violation): In this step we bound

the quantity C∗
n(π) =

∑k
j=1 I{Ẑj < 0, bj ∈ {b∗,π0}}. Define the number of

times the policy b∗ is played till episode k is Tk(b∗) and the number of
times the baseline policy is played is given by Tk(π0). Observe thatC∗

n(π) =∑k
j=1 I{Ẑj < 0, bj ∈ {b∗,π0}} = TK(π0)I{ξCZ,K} as when the constraint are

violated and policy π0 is played. Let

τ = max
{
k ⩽ K and nf ⩾

log(SAn(n+ 1)/δ)
mins,a b∗(a|s)∆c,α,(2)(s,a) | bk = π0

}
be the last episode in which the baseline policy is played. We will define
formally the gap ∆c,α,(2)(s,a) later. Observe that the constraint violation
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can be re-stated as follows:
τ∑
k=1

Ycbk(s
1
1)

:=

τ∑
k=1

∑
a

bk(a|s1
1)

µ̂c,k
L (s1,a) +

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s

2
j)

 < (1 − α)τVcπ0
(s1

1)

=⇒
τ∑
k=1

∑
a

bk(a|s1
1)

µ̂c,k
L

(s1
1,a) +

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)

 < (1 − α)τVcπ0
(s1

1)

(a)
=⇒

τ∑
k=1

∑
a

bk(a|s1
1)

µ̂c,k
L

(s1
1,a) +

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)


< (1 − α)

τ∑
k=1

π0(0|s1
1)

µc(s1
1, 0) +

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j)


=⇒

τ∑
k=1

∑
a

TkL (s
1
1,a)

µ̂c,k
L

(s1
1,a)+

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)


< (1 − α)

τ∑
k=1

TkL (s
1
1,a)

µc(s1
1, 0)+

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j)


(b)
=⇒

∑
a

TτL (s
1
1,a)µ̂c,τ

L
(s1

1,a)︸ ︷︷ ︸
Part A

+
∑
a

TτL (s
1
1,a)

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)

< (1 − α)
∑
a

TτL (s
1
1, 0)µc(s1

1, 0)︸ ︷︷ ︸
Part B

+(1 − α)TτL (s
1
1, 0)

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j)

(C.39)

where (a) follows as π0 samples baseline action 0 for each state s ∈ [S],
and in (b) the TτL (s1

1,a) denotes the total samples of state-action tuple till
episode τ. Comparing Part A and Part B for level ℓ = 1 we observe that
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the constraint violation must satisfy∑
a

TτL (s
1
1,a)µ̂c,τ

L
(s1

1,a) < (1 − α)TτL (s
1
1, 0)µc(s1

1, 0)

which can be reduced by following the same way as step 7 as Theorem 2

Tτ−1
L (s1

1, 0) ⩽ 1
αµc(s1

1, 0)

(
1 +

A∑
a=1

N(s1
1,a)

)
.

where ∆c,α(s1
1,a) := (1 − α)µc(s1

1, 0) − µc(s1
1,a) and

N(s1
1,a) := Tτ−1

L (s1
1,a) ·

(
(1 − α)µc(s1

1, 0) − µc(s1
1,a)

+c1

√
log(An(n+ 1)/δ)/Tτ−1

L (s1
1,a)

)
= ∆c,α(s1

1,a)Tτ−1
L (s1

1,a) + c1

√
log(An(n+ 1)/δ)Tτ−1

L (s1
1,a)
(C.40)

is a bound on the decrease in Ẑτ in the first τ− 1 rounds due to choosing
action a in s1

1. We will now bound N(s1
1,a) for each a. Now observe

∆c,α(s1
1,a) = (1 − α)µc(s1

1, 0) − µc(s1
1,a)

= µc(s1
1, 0) − αµc(s1

1, 0) − µc(s1
1,a)

= −(µ∗,c(s1
1) − µ

c(s1
1, 0)) − αµc(s1

1, 0) + (µ∗,c(s1
1) − µ

c(s1
1,a))

= −∆c(s1
1, 0) − αµc(s1

1, 0) + ∆c(s1
1,a).

where, µ∗,c(s1
1) = maxa µc(s1

1,a). It follows then that using step 7 as
Theorem 2 for the state s1

1

nu(s
1
1) ⩽

1
αµc(s1

1, 0)

(
1 +

A∑
a=1

N(s1
1,a)

)
⩽
H∗,(2)(s

1
1)

2
n

M(s1
1)
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where

H∗,(2)(s
ℓ
i) :=

∑
a

b∗(a|s
ℓ
i)

+

min{∆c(sℓi,a),∆c(sℓi, 0) − ∆c(sℓi,a)},

M(sℓi) :=
∑
a

√√√√√√π2(a|sℓi)

σ2(sℓi,a)+
∑
sℓ+1
j

P(sℓ+1
j |sℓi,a)M2(sℓ+1

j )

 (C.41)

Similarly, for an arbitrary level ℓ ∈ [L], we can show using (C.39) that the
constraint violation must satisfy

ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

TτL (s
ℓ ′

i ,a)µ̂c,τ
L

(sℓ
′

i ,a) < (1 − α)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

TτL (s
ℓ ′

i , 0)µc(sℓ ′i , 0)

(a)
=⇒

ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

(
T∗,K
L (sℓ

′

i ,a) − 4Ab∗(a|s
ℓ ′

i )
)
µ̂
c,τ
L

(sℓ
′

i ,a)

< (1 − α)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

(
T∗,K
L (sℓ

′

i , 0) + 4A
)
µc(sℓ

′

i , 0)

=⇒
ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

(
T∗,K
L (sℓ

′

i ,a)
)
µ̂
c,τ
L

(sℓ
′

i ,a)

< (1 − α)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

(
T∗,K
L (sℓ

′

i , 0)
)
µc(sℓ

′

i , 0) + 8LSA2(µc(sℓ
′

i , 0) + µ̂c,τ
L

(sℓ
′

i ,a))
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=⇒
ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

(
T∗,K
L (sℓ

′

i ,a)
)
µ̂
c,τ
L

(sℓ
′

i ,a)

< (1 − α)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

(
T∗,K
L (sℓ

′

i , 0)
)
µc(sℓ

′

i , 0)

+ 8LSA2(µc(sℓ
′

i , 0) + µ̂c,τ
L (sℓ

′

i ,a) −

√
log((SAn(n+ 1)/δ)

2TτL (sℓ
′
i ,a)

)

(b)
=⇒

ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

(
T∗,K
L (sℓ

′

i ,a)
)
µ̂
c,τ
L

(sℓ
′

i ,a)

< (1 − α)max
s,a

µc0(s,a)
ℓ∑
ℓ ′=1

∑
sℓ

′
i

(
T∗,K
L (sℓ

′

i , 0)
)
+ 16LSA2 (C.42)

where, (a) follows from (C.38) and (b) follows as µ(s,a) ∈ (0, 1] for all
s,a. It follows then that using step 7 of Theorem 2 and definition of N(sℓj)

from (C.40)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

T∗,K
L (sℓ

′

i , 0) ⩽ 1
αmaxs µc(s, 0)

1 +

ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

N(sℓj ,a)


⩽
n

2

ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

H∗,(2)(s
ℓ ′

i )

M(sℓ
′
i )

+ 16LSA2

which gives a bound on how many times action {0} is sampled across
different states till level ℓ. Summing over all states sℓj till level L we can
show that

nu =

L∑
ℓ=1

∑
sℓj

T∗,K
L (sℓj , 0) ⩽ n

2

L∑
ℓ=1

∑
sℓj

H∗,(2)(s
ℓ
j)

M(sℓj)
+ 16LSA2

(a)

⩽
H∗,(2)

2
n

Mmin
+ 16LSA2

(C.43)
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where, in (a)we defineMmin = minsM(s), andH∗,(2) =
∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j).

Finally, observe that 16LSA2 does not depend on the episode K.
Step 8 (Lower bound to Constraint violation): For the lower bound

to the constraint we equate Equation (C.39) to 0 and show that∑
a

TτL (s
1
1,a)µ̂c,τ

L
(s1

1,a)︸ ︷︷ ︸
Part A

+
∑
a

TτL (s
1
1,a)

∑
s2
j

P(s2
j |s

1
1,a)Ycbk(s2

j)

= (1 − α)
∑
a

TτL (s
1
1, 0)µc(s1

1, 0)︸ ︷︷ ︸
Part B

+(1 − α)TτL (s
1
1, 0)

∑
s2
j

P(s2
j |s

1
1, 0)Vcπ0

(s2
j)

Again comparing Part A and Part B for level ℓ = 1 we observe that the
lower bound to constraint violation must satisfy∑

a

TτL (s
1
1,a)µ̂c,τ

L
(s1

1,a) = (1 − α)TτL (s
1
1, 0)µc,(s1

1, 0)

which can be reduced by following the same way as step 8 as Theorem 2

∑
a

Tτ−1
L (s1

1, 0) ⩾ 1
αµc(s1

1, 0)

(
1 +

A∑
a=1

N(s1
1,a)

)
.

where ∆c,α(s1
1,a) := (1 − α)µc(s1

1, 0) − µc(s1
1,a) and

N(s1
1,a) := Tτ−1

L (s1
1,a) ·

(
(1 − α)µc(s1

1, 0) − µc(s1
1,a)

+c1

√
log(An(n+ 1)/δ)/Tτ−1

L (s1
1,a)

)
= ∆c,α(s1

1,a)Tτ−1
L (s1

1,a) + c1

√
log(An(n+ 1)/δ)Tτ−1

L (s1
1,a)

(a)

⩾ ∆c,α(s1
1,a)

(
T∗,K
L (s1

1,a) − 4Ab∗(a|s
1
1)
)

+ c1

√
log(An(n+ 1)/δ)

(
T∗,K
L (s1

1,a) − 4Ab∗(a|s1
1)
)
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where, (a) follows from (C.37). Then following the same way as step 8 of
Theorem 2 we can show that

Tτ−1
L (s1

1, 0) ⩾ 1
αµc(s1

1, 0)

(
1 +

A∑
a=1

N(s1
1,a)

)

⩾
nf

M(s1
1)

(
H∗,(2)(s

1
1)

8 −
A

2
H∗,(2)(s

1
1)

M(s1
1)

)
− 16SA

Similarly for any arbitrary level ℓ ∈ [L] following the same way as step 7
above it can be shown that

ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

(
T∗,K
L (sℓ

′

i ,a) + 4A
)
µ̂
c,τ
L

(sℓ
′

i ,a)

⩾ (1 − α)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

(
T∗,K
L (sℓ

′

i , 0) − 4Ab∗(0|sℓ
′

i )
)
µc(sℓ

′

i , 0)

=⇒
ℓ∑
ℓ ′=1

∑
sℓ

′
i

∑
a

T∗,K
L (sℓj ,a)µ̂

c,τ
L

(sℓj ,a)

⩾ (1 − α)

ℓ∑
ℓ ′=1

∑
sℓ

′
i

T∗,K
L (sℓi, 0)µc(sℓi, 0) − 16LSA2

Again following the same way as step 8 of Theorem 2 for the state sℓj , the
lower bound to the total number of times the baseline actions are sampled
across states till level ℓ is given by we can show that

ℓ∑
ℓ ′=1

∑
sℓ

′
j

T∗,K
L (sℓ

′

j , 0) ⩾ 1
αmaxsℓj µ

c(sℓj , 0)

1 +

ℓ∑
ℓ ′=1

∑
sℓ

′
j

A∑
a=1

N(sℓ
′

j ,a)


⩾

L∑
ℓ=1

∑
sℓj

nf

M(sℓj)

(
H∗,(2)(s

ℓ
j)

8 −
A

2
H∗,(2)(s

ℓ
j)

M(sℓj)

)
− 16LSA2
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Finally summing over all states sℓj and level Lwe can show that

L∑
ℓ=1

∑
sℓj

T∗,K
L (sℓj , 0) ⩾

L∑
ℓ=1

∑
sℓj

nf

M(sℓj)

(
H∗,(2)(s

ℓ
j)

8 −
A

2
H∗,(2)(s

ℓ
j)

M(sℓj)

)
− 16LSA2

(C.44)

Again, observe that 16LSA2 does not depend on the episode K.
Step 9 (Bound Part B): Then from (C.44) we can show that

M(s1
1)∑L

ℓ=1
∑
sℓj
T∗,K
L (sℓj , 0)

⩽
M(s1

1)∑L
ℓ=1

∑
sℓj

nf

M(sℓj)

(
H∗,(2)(s

ℓ
j)

8 −
A

2
H∗,(2)(s

ℓ
j)

M(sℓj)

)
− 16LSA2

(a)

⩽ (M(s1
1) + 16LSA2)

L∑
ℓ=1

∑
sℓj

M(sℓj)

nf

(
H∗,(2)(s

ℓ
j)

8 +
A

2
H∗,(2)(s

ℓ
j)

M(sℓj)

)

⩽ (M(s1
1) + 16LSA2)

L∑
ℓ=1

∑
sℓj

M(sℓj)

nf

(
2 +H∗,(2)(s

ℓ
j)
)

(b)

⩽ (M(s1
1) + 16LSA2)

M

nf

(
2 +H∗,(2)

)
where, (a) follows for 1/(x − c) ⩽ x + c for x2 ⩾ 1 + c2 and c > 0. The
(b) follows forM =

∑L
ℓ=1

∑
sℓj
M(sℓj), and H∗,(2) =

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j). It

follows then by setting nf = n− nu that

ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCZ,K}

] (a)

⩽

(
(M(s1

1) + 16LSA2)M
(
2 +H∗,(2)

)
nf

)2

nu

(b)
=

(M(s1
1) + 16LSA2)2nu

(n− nu)2

(
2 +H∗,(2)

)2

(c)

⩽
(M(s1

1) + 16LSA2)2H∗,(2)n

(n−H∗,(2)n)2

(
2 +H∗,(2)

)2

⩽
M2(s1

1)

n

(
32MLSA2 +H∗,(2)

)2
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where, (a) follows from Theorem C.1, (b) follows from the definition of
H∗,(2), and (c) follows from (C.43).

Step 10 (Combine everything): Combining everything from step 5,
step 8 and setting δ = 1/n2 we can show that the MSE of oracle scales as

Ln(π, bk∗) ⩽
M2(s1

1)

n
+

8AM2(s1
1)

n2 +
16A2M2(s1

1)

n3 +
M2(s1

1)

n

(
32MLSA2+H∗,(2)

)2

+ ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCc,K}

]
︸ ︷︷ ︸

Part C, Safety event does not hold

(a)

⩽
M2(s1

1)

n
+

8AM2(s1
1)

n2 +
16A2M2(s1

1)

n3 +
M2(s1

1)

n

(
32MLSA2 +H∗,(2)

)2

+ 2
n∑
t=1

2η+ 4η2

n2 (C.45)

where, (a) follows as ED

[(
Yn(s

1
1) − Vπ(s

1
1)
)2 I{ξCc,K}

]
⩽ 2η+4η2 and using

the low error probability of the constraint event from Theorem C.14. The
claim of the proposition follows.

Tree Regret Corollary

Corollary 1. Under Assumption 6 the constraint regret in the Tree MDP is given

by R
c

n ⩽ O

(
log(n)

b3/2
∗,minn

3/2

)
and the regret is given by Rn ⩽ O

(
log(n)

b3/2
∗,minn

3/2

)
.

Proof. The upper bound to the safe oracle constraint is given by (C.43) as
follows

C∗
n(π, bk∗) ⩽

H∗,(2)

2
n

Mmin
+ 16LSA2.
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The upper bound to the constraint violation of SaVeR is given by (C.26)

Cn(π, b̂k) ⩽
H∗,(2)

2
n

Mmin
+ 16LSA2

+O

(
(2η+ 4η2)L2S2A4H2

∗,(2)M
2
√

log(SAn(n+ 1)/δ)
mins b∗,k,(3/2)(s)n3/2

)
.

Hence, from the constraint regret definition, we can show that

R
c

n = Cn(π, b̂k) − C
∗
n(π, b∗) ⩽ O

(
logn

b3/2
∗,minn

3/2

)
.

Observe that the loss of the agnostic algorithm SaVeR is given by (C.28)
and the upper bound to the oracle loss is given by (C.45). Comparing
these two losses directly leads to the regret as follows:

Rn = Ln(π, b̂k) − L
∗
n(π, bk∗) = O

(
log(n)

b3/2
∗,minn

3/2

)
.

The claim of the corollary follows.

Corollary 2. Under Assumption 6 the constraint regret in the bandit setting is

given by R
c

n ⩽ O

(
log(n)

b3/2
∗,minn

3/2

)
and the regret is given by Rn ⩽ O

(
log(n)

b3/2
∗,minn

3/2

)
.

Proof. The bandit setting consists of a single state, and so we can define
the quantityH∗,(2) =

1
αµ(0)

∑
a∈A\{0} π(a)σ(a)min+{∆c(a),∆c(0)−∆c(a)}

The upper bound to the oracle constraint is given by (C.43) as follows

C∗
n(π, bk∗) ⩽

H∗,(2)

2
n

Mmin
+ 16A2.
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The upper bound to the constraint violation of SaVeR is given by (C.26)

Cn(π, b̂k) ⩽
H∗,(2)

2
n

Mmin
+ 16A2 +O

(
(2η+ 4η2)A4H2

∗,(2)M
2
√

log(An(n+ 1)/δ)
mins b∗,k,(3/2)(s)n3/2

)
.

Hence, from the constraint regret definition, we can show that

R
c

n = Cn(π, b̂k) − C
∗
n(π, bk∗) ⩽ O

(
logn

b3/2
∗,minn

3/2

)
.

Observe that the loss of the agnostic algorithm SaVeR is given by (C.28)
and the upper bound to the oracle loss is given by (C.45). Comparing
these two losses directly leads to the regret as follows:

Rn = Ln(π, b̂k) − L
∗
n(π, bk∗) = O

(
log(n)

b3/2
∗,minn

3/2

)
.

The claim of the corollary follows.

C.5 Support Lemmas
Lemma C.11. (Hoeffding’s Lemma)(Massart, 2007) Let Y be a real-valued
random variable with expected value E[Y] = µ, such that a ⩽ Y ⩽ b with
probability one. Then, for all λ ∈ R

E
[
eλY
]
⩽ exp

(
λµ+

λ2(b− a)2

8

)
Lemma C.12. (Concentration lemma 1) Let Vt = Rt(s,a)−E[Rt(s,a)] and
be bounded such that Vt ∈ [−η,η]. Let the total number of times the state-action
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(s,a) is sampled be T . Then we can show that for an ϵ > 0

P

(∣∣∣∣∣ 1T
T∑
t=1

Rt(s,a) − E[Rt(s,a)]

∣∣∣∣∣ ⩾ ϵ
)

⩽ 2 exp
(
−

2ϵ2T

η2

)
.

Proof. Let Vt = Rt(s,a) − E[Rt(s,a)]. Note that E[Vt] = 0. Hence, for the
bounded random variable Vt ∈ [−η,η] we can show from Hoeffding’s
lemma in Theorem C.11 that

E[exp (λVt)] ⩽ exp
(
λ2

8 (η− (−η))
2
)

⩽ exp
(
2λ4η2)

Let st−1 denote the last time the state s is visited and action a is sampled.
Observe that the reward Rt(s,a) is conditionally independent and η2-sub-
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Gaussian. Next we can bound the probability of deviation as follows:

P

(
T∑
t=1

(Rt(s,a) − E[Rt(s,a)]) ⩾ ϵ
)

= P

(
T∑
t=1

Vt ⩾ ϵ

)
(a)
= P

(
eλ

∑T
t=1Vt ⩾ eλϵ

)
(b)

⩽ e−λϵE
[
e−λ

∑T
t=1Vt

]
= e−λϵE

[
E
[
e−λ

∑T
t=1Vt

∣∣sT−1

]]
(c)
= e−λϵE

[
E
[
e−λVT |ST−1

]
E
[
e−λ

∑T−1
t=1 Vt

∣∣sT−1

]]
⩽ e−λϵE

[
exp

(
2λ4η2)E [e−λ∑T−1

t=1 Vt
∣∣sT−1

]]
= e−λϵe2λ2η2E

[
e−λ

∑T−1
t=1 Vt

]
...
(d)

⩽ e−λϵe2λ2Tη2

(e)

⩽ exp
(
−

2ϵ2

Tη2

)
(C.46)

where (a) follows by introducing λ ∈ R and exponentiating both sides,
(b) follows by Markov’s inequality, (c) follows as Vt is conditionally inde-
pendent given sT−1, (d) follows by unpacking the term for T times and (e)
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follows by taking λ = ϵ/4Tη2. Hence, it follows that

P

(∣∣∣∣∣ 1T
T∑
t=1

Rt(s,a) − E[Rt(s,a)]

∣∣∣∣∣ ⩾ ϵ
)

= P

(
T∑
t=1

(Rt(s,a) − E[Rt(s,a)]) ⩾ Tϵ
)

(a)

⩽ 2 exp
(
−

2ϵ2T

η2

)
.

where, (a) follows by (C.46) by replacing ϵwith ϵT , and accounting for
deviations in either direction.

Lemma C.13. (Concentration lemma 2) Let µ2(s,a) = E
[
R2
t(s,a)

]
. Let

Rt(s,a) be η2 sub-Gaussian. Let n = KL be the total budget of state-action
samples. Define the event

ξδ =

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

R2
t(s,a) − µ2(s,a)

∣∣∣∣∣∣ ⩽ Cn(δ)

⋂

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

Rt(s,a) − µ(s,a)

∣∣∣∣∣∣ ⩽ Cn(δ)



(C.47)

where, Cn(δ) = Cn(δ). Then we can show that P (ξδ) ⩾ 1 − 2δ.

Proof. First note that the total budget n = KL. Observe that the ran-
dom variable Rkt (s,a) and R(2),k

t (s,a) are conditionally independent given
the previous state Skt−1. Also observe that for any η > 0 we have that
Rkt (s,a),R

(2),k
t (s,a) ⩽ 2η+ 4η2, where R(2),k

t (s,a) = (Rkt (s,a))2. Hence we
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can show that

P

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

R2
t(s,a) − µ2(s,a)

∣∣∣∣∣∣ ⩾ Cn(δ)



⩽ P

⋃
s∈S

⋃
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

R2
t(s,a) − µ2(s,a)

∣∣∣∣∣∣ ⩾ Cn(δ)



(a)

⩽
S∑
s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp
(
−

2Tn
4(η2 + η)2 ·

4(η2 + η)2 log(SAn(n+ 1)/δ)
2Tn(s,a)

)
= δ.

where, (a) follows from Theorem C.12. Note that in (a) we have to take a
double union bound summing up over all possible pulls Tn from 1 to n as
Tn is a random variable. Similarly we can show that

P

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

Rt(s,a) − µ(s,a)

∣∣∣∣∣∣ ⩾ Cn(δ)



(a)

⩽
S∑
s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp
(
−

2Tn
4(η2 + η)2 ·

4(η2 + η)2 log(SAn(n+ 1)/δ)
2Tn(s,a)

)
= δ.

where, (a) follows from Theorem C.12. Hence, combining the two events
above we have the following bound

P (ξδ) ⩾ 1 − 2δ.

Corollary 3. Under the event ξδ in (C.47) we have for any state-action pair in
an episode k the following relation with probability greater than 1 − δ

|σ̂kt (s,a) − σ(s,a)| ⩽ (2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2TKL (s,a)
.
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where, TKL (s,a) is the total number of samples of the state-action pair (s,a) till
episode k.

Proof. Observe that the event ξδ bounds the sum of rewards Rkt (s,a) and
squared rewards Rk,(2)

t (s,a) for any TKL (s,a) ⩾ 1. Hence we can directly
apply the Theorem C.13 to get the bound.

Lemma C.14. Let µc(s,a) = E [Ct(s,a)] and Ct(s,a) ⩽ 2η. Define the event

ξδ =
⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

Ct(s,a) − µc(s,a)

∣∣∣∣∣∣
⩽ Cn(δ)} . (C.48)

Then we can show that P(ξδ) ⩾ 1 − δ.

Proof. We can show that

P

⋂
s∈S

⋂
1⩽a⩽A,Tn(s,a)⩾1


∣∣∣∣∣∣ 1
Tn(s,a)

Tn(s,a)∑
t=1

Ct(s,a) − µc(s,a)

∣∣∣∣∣∣
⩾ Cn(δ)})

(a)

⩽
S∑
s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp
(
−

2Tn(s,a)
4(η2 + η)2 ·

4(η2 + η)2 log(SAn(n+ 1)/δ)
2Tn(s,a)

)
= δ.

where, (a) follows from Theorem A.4 when applied for cost. The claim of
the lemma follows.

Corollary 4. Let the total exploration budget benx = SA log(SAn(n+1)/δ)
mins,a∆c,(2)(s,a) . Define

the event ξδ as in (C.48). Then using the exploration policy πx it can be shown
that P(ξδ) ⩾ 1 − δ.

Proof. Let nx =
SA log(SAn(n+1)/δ)

mins,a∆c,(2)(s,a) be the total samples taken for explo-
ration. Let πe sample each action according to uniform random policy in



425

each state s ∈ [S]. Then the result follows directly from Theorem C.14 in

P

⋂
s∈S

⋂
1⩽a⩽A,Tnx(s,a)⩾1


∣∣∣∣∣∣ 1
Tnx(s,a)

Tnx(s,a)∑
t=1

Ct(s,a) − µc(s,a)

∣∣∣∣∣∣
⩾ (2η+ 4η2)

√
log(SAn(n+ 1)/δ)

2Tnx

})
(a)

⩽ δ,

where, (a) follows as by noting Tnx ⩾
log(SAn(n+1)/δ)
mins,a∆c,(2)(s,a) .

C.6 Additional Experimental Details
In this section we state additional experimental details.

Experiment 1 (Bandit): We implement a bandit environment for A =

11 and show that our proposed solution outperforms the safe on-policy
and SEPEC (Wan et al., 2022) algorithm. In this experiment we have the
µ(0) = 0.5,σ2(0) = 10−4, µ(1) = 0.9,σ2(1) = 10−4 (optimal action), and
the sub-optimal actions a ∈ {2, 3, . . . , 11} have means µ(a) ∈ [0.02, 0.03]
and high variance σ2(a) = 40. Moreover, we set the constraint-value
means µc(a) the same as the reward means. The target policy is initialized
as π(0) = π(1) = 0.4 while the remaining arms have the 0.2 density evenly
distributed among them. So in this environment, the safe on-policy will
select the sub-optimal actions less and so reduces MSE at a slower rate.
Whereas the SaVeR, complies with the safety constraint and reduces MSE
maximally as the number of rounds increases. The performance is shown
in Figure 4.1 (left). Again observe that in Figure 4.2 (top-left), the oracle
keeps the safety budget around 0 and uses all the remaining samples to
explore optimally. The SaVeR has a safety budget of almost around 0 as
they sample the high cost maximizing action 1 a sufficient number of times
to offset the unsafe action pulls. However, safe on-policy and SEPEC again
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explores the high variance (sub-optimal and unsafe) actions less and has
a very high safety budget.

Experiment 2 (Movielens): We conduct this experiment on Movielens
dataset for A = 30 actions and show that our proposed solution outper-
forms safe on-policy and SEPEC algorithm. The Movielens dataset from
February 2003 consist of 6k users who give 1M ratings to 4k movies. We
obtain a rank-4 approximation of the dataset over 128 users and 128 movies
such that all users prefer either movies 7, 13, 16, or 20 (4 user groups).
The movies are the actions and we choose 30 movies that have been rated
by all the users. Hence, this testbed consists of 30 actions and the mean
values µ(a) are the rating of the movies given by the users. and is run over
T = 8000. The target policy is initialized as π(0) = π(1) = 0.4 while the
remaining arms has the 0.2 density evenly distributed among them. We set
the cost means µc(a) such that high variance actions have high-cost means.
So in this environment, the safe on-policy will select the sub-optimal cost
actions less and so reduces MSE at a slower rate as the number of rounds
increases. The SEPEC MSE also reduces slower than SaVeR as the number
of rounds increases. This is because SEPEC uses an IPW estimator instead
of tracking the optimal behavior policy like SaVeR. The SaVeR, complies
with the safety constraint and reduces MSE maximally as the number of
rounds increases. The performance is shown in Figure 4.1 (middle-left).
Again observe that in Figure 4.2 (top-right), the oracle keeps the safety
budget around 0 and uses all the remaining samples to explore optimally.
The SaVeR has a safety budget of almost around 0 as they sample the
high reward maximizing action 1 a sufficient number of times to offset the
unsafe action pulls. However, safe on-policy and SEPEC again explores
the high variance (sub-optimal and unsafe) actions less and has a very
high safety budget.

Experiment 3 (Tree): We experiment with a 4-depth 2-action deter-
ministic tree MDP T consisting of 15 states. In this setting, we have a
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4-depth 2-action deterministic tree MDP T consisting of 15 states. Each
state has a low variance arm with σ2(s, 1) = 0.01 and high target proba-
bility π(1|s) = 0.95 and a high variance arm with σ2(s, 1) = 20.0 and low
target probability π(2|s) = 0.05. Again we set the cost means µc(a) such
that high variance actions have high-cost means. Hence, the safe on-policy
sampling which samples according to π will sample the second (high
variance) arms less and suffer a high MSE. We set α = 0.25. We assume
that the learner can directly access the Vπ0(s1

1) (without any noise) when
its safety budget is negative. It can observe Vπ0(s1

1) without running any
episodic interaction (like Yang et al. (2021b). The oracle has access to the
model and variances and performs the best. SaVeR lowers MSE compara-
ble to safe onpolicy as the number of episodes increases and eventually
matches the oracle’s MSE in Figure 4.1 (middle-right). The SaVeR, oracle,
and on-policy have an almost equal safety budget as shown in Figure 4.2
(bottom-left). Note that we do not run SEPEC in this experiment as it is a
bandit algorithm, and the optimization problem of SEPEC do not have a
closed form solution in the MDP setting.

Experiment 4 (Gridworld): In this setting we have a 4× 4 stochastic
gridworld consisting of 16 grid cells. Considering the current episode
time-step as part of the state, this MDP is a DAG MDP in which there is
multiple paths to a single state. There is a single starting location at the
top-left corner and a single terminal state at the bottom-right corner. Let
L, R, D, U denote the left, right, down, and up actions in every state. Then
in each state, the right and down actions have low variance arms with
σ2(s, R) = σ2(s, D) = 0.01 and high target policy probability π(R|s) =

π(D|s) = 0.45. The left and top actions have high variance arms with
σ2(s, L) = σ2(s, U) = 0.01 and low target policy probability π(L|s) =

π(U|s) = 0.05. We set the cost means µc(a) such that high variance actions
have high-cost means. Hence, safe onpolicy which goes right and down
with high probability (to reach the terminal state) will sample the low
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variance arms more and suffer a high MSE. We set α = 0.25. Again we
assume that the learner can directly access the Vπ0(s1) (without any noise)
when it’s safety budget is negative. It can observe Vπ0(s1) without running
any episodic interaction (like Yang et al. (2021b). SaVeR lowers MSE faster
compared to safe onpolicy and actually matches MSE compared to the
oracle as well as maintains the safety constraint with increasing number of
episodes. We point out that the DAG structure of the Gridworld violates
the tree structure under which the oracle and SaVeR bounds were derived.
Nevertheless, both methods lower MSE compared to safe onpolicy. Again
observe that in Figure 4.2 (bottom-right), the oracle keeps the safety budget
around 0 and uses all the remaining samples to explore optimally. The
SaVeR has a safety budget of almost around 0 as they sample the high
reward maximizing action a sufficient number of times to offset the unsafe
action pulls. However, safe on-policy again explores the high variance
(sub-optimal and unsafe) actions less and has a very high safety budget.
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C.7 Table of Notations

Notations Definition
sℓi State s in level ℓ indexed by i
π(a|sℓi) Target policy probability for action a in sℓi
b(a|sℓi) Behavior policy probability for action a in sℓi
σ2(sℓi,a) Variance of action a in sℓi
σ̂
(2),k
t (sℓi,a) Empirical variance of action a in sℓi at time t in

episode k
σ̂u

(2),k
t (sℓi,a) UCB on variance of action a in sℓi at time t in

episode k
µ(sℓi,a) Mean of action a in sℓi
µ̂kt (s

ℓ
i,a) Empirical mean of action a in sℓi at time t in

episode k
µ2(sℓi,a) Square of mean of action a in sℓi
µ̂
(2),k
t (sℓi,a) Square of empirical mean of action a in sℓi at

time t in episode k
Tn(s

ℓ
i,a) Total Samples of action a in sℓi aftern timesteps

Tn(s
ℓ
i) Total samples of actions in sℓi as

∑
a Tn(s

ℓ
i,a)

after n timesteps (State count)
Tkt (s

ℓ
i,a) Total samples of action a taken till episode k

time t in sℓi
Tkt (s

ℓ
i,a, sℓ+1

j ) Total samples of action a taken till episode k
time t in sℓi to transition to sℓ+1

j

P(sℓ+1
j |sℓi,a) Transition probability of taking action a in

state sℓi and transition to state sℓ+1
j

Table C.1: Table of Notations for SaVeR
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d appendix: multi-task representation learning
for pure exploration in bilinear bandits

D.1 Probability Tools and Previous Results
In this section, we state useful lemmas we use in our proofs and previous
results.

Lemma D.1. (Generalized Stein’s Lemma, (Stein et al., 2004)) For a random
variable Xwith continuously differentiable density function p : Rd → R, and any
continuously differentiable function f : Rd → R. Let Q(·) be a scoring function
defined in Theorem D.5. If the expected values of both ∇f(X) and f(X) ·Q(X)

regarding the density p exist, then they are identical, i.e.

E[f(X) ·Q(X)] = E[∇f(X)].

Lemma D.2. (Minsker, 2018) Define ∥A∥op as the operator norm of A. Let
Y1, . . . , Yn ∈ Rd1×d2 be a sequence of independent real random matrices, and
assume that

σ2
n ⩾ max

∥∥∥∥∥
n∑
j=1

E
(
YjY⊤

j

)∥∥∥∥∥
op

,

∥∥∥∥∥
n∑
j=1

E
(
Y⊤
j Yj

)∥∥∥∥∥
op

 .

Then for any t ∈ R+and ν ∈ R+, it holds that,

P

∥∥∥∥∥
n∑
j=1

ψ̃ν (Yj) −
n∑
j=1

E (Yj)

∥∥∥∥∥
op

⩾ t
√
n

 ⩽ 2 (d1 + d2) exp
(
νt
√
n+

ν2σ2
n

2

)

Lemma D.3. (Restatement of Theorem 4.1 in Kang et al. (2022)) For any
low-rank linear model with samples X1 . . . , Xn1 drawn from X according to D

then for the optimal solution to the nuclear norm regularization problem in (5.2)
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with ν =
√

2 log (2 (d1 + d2) /δ) / ((4 + S2
0)Mn1d1d2) and

γn1 = 4

√
2 (4 + S2

0)Cd1d2 log (2 (d1 + d2) /δ)

n1
,

with probability at least 1 − δ it holds that:

∥∥∥Θ̂− µ∗Θ∗

∥∥∥2

F
⩽
C1d1d2r log

(
2(d1+d2)

δ

)
n1

,

for C1 = 36
(
4 + S2

0
)
C, ∥X∥F, ∥Θ∗∥F ⩽ S0, some nonzero constant µ∗, and

E
[
(Sp(X))2

ij

]
⩽ C, ∀i, j.

D.2 G-optimal design on rotated arms
Remark D.4. (G-optimal design on rotated arms:) Using the concentration
inequality in Proposition 1 we can show that for any arbitrary vector y ∈ Rp:

|y⊤(θ̂ℓ − θ∗)| ⩽ ∥y∥V−1
ℓ

2
√

14 log(2/δ) + ∥θ∗∥Λℓ
⩽ ∥y∥V−1

ℓ

√
8Bℓ∗ log(2/δ)

where the co-variance matrix Vℓ :=
∑τEℓ
s=1 wsw⊤

s + Λℓ and Bℓ∗ is defined in
Proposition 1. Now we want this to hold for all y ∈ Y∗(Wℓ), and so we need
to union bound over W ⊇ Wℓ replacing δ with δ/|W|. Set the phase length
τGℓ :=

⌈
64Bℓ∗ρG(Y(Wℓ)) log(4ℓ2|W|/δ)

ϵ2
ℓ

⌉
where ρG(Y(Wℓ)) is defined in step 14 of

Algorithm 5.
Then for the allocation 2⌊bGwτGℓ ⌋ for each bw ∈ Wℓ, we have for each w ∈

Wℓ\w∗ that with probability at least 1 − δ,

(w∗ − w)⊤θ̂ℓ

⩾ (w∗ − w)⊤θ∗ − ∥w∗ − w∥(∑w∈W⌈2τGℓ b∗
w⌉w w⊤+2τGℓ Λℓ/τ

G
ℓ )

−1

√
8Bℓ∗ log(2|W|/δ)
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since for every w∗ − w ∈ Y∗(W) we have

(w∗ − w)⊤
(
2
∑

w∈W

⌈τGℓ b∗
w⌉w w⊤ + 2τ

G
ℓ Λℓ

τGℓ

)−1
(w∗ − w)

⩽ 1
τGℓ
∥w∗ − w∥2

(
∑

w∈Wℓ
b∗

ww w⊤+
Λℓ

τGℓ
)−1

⩽ ((w∗−w)⊤θ∗)
2√

8Bℓ∗ log(2|W|/δ)
.

The last inequality follows by plugging in the value of τGℓ and ρG(Y(Wℓ)). Hence
to minimize the number of samples τGℓ in phase ℓ we can re-arrange the above
equation to show that

τGℓ ⩾
√

8Bℓ∗ log(2|W|/δ) max
w∈Wℓ\w∗

∥w∗−w∥2
(
∑

w∈Wℓ
b∗ww w⊤+Λ/n)−1

(w∗−w)⊤θ∗

Hence, to minimize the sample complexity for the bilinear setting we need to
sample according to

bGℓ = argmin
b

max
w

∥w∗−w∥2
(
∑

w∈Wℓ
bww w⊤+Λ/n)−1

(w∗−w)⊤θ∗
(D.1)

However, note that we do know the identity of w∗ or the gaps (w∗ − w)⊤θ∗. So
we replace the gaps with a lower bound of ϵ = 2−t and compare against every
pair of arms w and w ′ as follows:

bGℓ = argmin
bw

max
w,w ′∈Wℓ

∥w − w ′∥2
(
∑

w∈W bww w⊤+Λℓ/n)−1 (D.2)

This is shown in step 12 of Algorithm 5.
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D.3 Application of Stein’s Lemma
We also present the following two definitions from Kang et al. (2022) to
facilitate analysis via Stein’s method:

Definition D.5. (Score Function) Let p : R→ R be a univariate probability
density function defined on R. The score functionQp : R→ R regarding density
p(·) is defined as:

Qp(x) = −∇x log(p(x)) = −∇xp(x)/p(x), x ∈ R.

In particular, for a random matrix with its entrywise probability density
p = (pij) : Rd1×d2 → Rd1×d2 , we define its score function Qp =

(
Q

p
ij

)
:

Rd1×d2 → Rd1×d2 as Qp
ij(x) = Qpij(x) by applying the univariate score

function to each entry of p independently.

Assumption 11. The norm of true parameter Θ∗ and feature matrices in X is
bounded: there exists S ∈ R+such that for all arms X ∈ X, ∥X∥F, ∥Θ∗∥F ⩽ S0

Assumption 12. (Finite second-moment score) There exists a sampling
distribution D over X such that for the random matrix X drawn from D with its
associated density p : Rd1×d2 → Rd1×d2 , we have E

[
(Qp(X))2

ij

]
⩽ C,∀i, j

Definition D.6. Given a rectangular matrix A ∈ Rd1×d2 , the (Hermitian)
dilation H : Rd1×d2 → R(d1+d2)×(d1+d2) is defined as:

H(A) =

(
0 A

A⊤ 0

)

Definition D.7. (The function ψ̃ν) To explore the valid subspace of the pa-
rameter matrix Θ∗, we define a function ψ : R → R in (D.3). Let H(·) be
as defined in Theorem D.6. Then define ψ̃ν : Rd1×d2 → Rd1×d2 as ψ̃ν(A) =
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ψ(νH(A))1:d1,(d1+1):(d1+d2)/ν for some parameter ν ∈ R+

ψ(x) =

log
(
1 + x+ x2/2

)
, x ⩾ 0

− log
(
1 − x+ x2/2

)
, x < 0

(D.3)

D.4 Single-task Pure Exploration Proofs
Good Event: Define the good event Fℓ in phase ℓ that GOBLIN has a good
estimate of Θ∗ as follows:

Fℓ =
∥∥∥Θ̂ℓ − µ

∗Θ∗

∥∥∥2

F
⩽
C1d1d2r log

(
2(d1+d2)
δℓ

)
τEℓ

, (D.4)

where, C1 = 36
(
4 + S2

0
)
C, ∥X∥F, ∥Θ∗∥F ⩽ S0, some nonzero constant µ∗,

E
[
(Sp(X))2

ij

]
⩽ C, ∀i, j, and Θ̂ℓ is the estimate from (5.2). Then define the

good event

F :=

∞⋂
ℓ=1

Fℓ. (D.5)

Lemma D.8. The event F holds with probability greater than (1 − δ/2).

Proof. From Theorem D.3 we know the event Fℓ in (D.4) holds with prob-
ability (1 − δℓ). Taking a union bound over all phases ℓ ⩾ 1 and recalling



435

δℓ :=
δ

2ℓ2 , we obtain

P(F) ⩾ 1 −

∞∑
ℓ=1

P (Fcℓ )

⩾ 1 −

∞∑
ℓ=1

δℓ

2

= 1 −

∞∑
ℓ=1

δ

4ℓ2

⩾ 1 −
δ

2.

This concludes our proof.

Now we move to the second stage for the rotated arm set w ∈W and
prove the following concentration event.

Lemma D.9. For any fixed w ∈ Rp and any δ > 0, we have that if β (θ∗, δ) =
2
√

14 log(2/δ) + ∥θ∗∥Λ, then at time τℓ−1 + 1 (beginning of phase ℓ):

P
(∣∣∣w⊤

(
θ̂ℓ − θ∗

)∣∣∣ ⩽ ∥w∥V−1
ℓ
β (θ∗, δ)

)
⩾ 1 − δ

where, Vℓ :=
∑τℓ
s=τℓ−1+1 wsw⊤

s +Λℓ.

Proof. We follow the proof technique of Lemma 7 of Valko et al. (2014).
Defining ¸ℓ =

∑τℓ
s=τℓ−1+1 wsηs, we have:∣∣∣w⊤
(
θ̂ℓ − θ∗

)∣∣∣ (a= ∣∣w⊤ (−V−1
ℓ Λθ∗ + V−1

ℓ ¸ℓ
)∣∣

(b)

⩽
∣∣w⊤V−1

ℓ Λℓθ∗
∣∣+ ∣∣w⊤V−1

ℓ ¸ℓ
∣∣ (D.6)

where (a) follows from Woodbury matrix identity and rearranging the
terms, and (b) follows from the triangle inequality.
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The first term in the right-hand side of (D.6) is bounded as:

∣∣w⊤V−1
ℓ Λℓθ∗

∣∣ ⩽ ∥∥∥w⊤V−1
ℓ Λ

1/2
ℓ

∥∥∥ ∥∥∥Λ1/2
ℓ θ∗

∥∥∥
(a)
= ∥θ∗∥Λℓ

√
w⊤V−1

ℓ ΛℓV−1
ℓ w

⩽ ∥θ∗∥Λℓ

√
w⊤V−1

ℓ w = ∥θ∗∥Λℓ
∥w∥V−1

ℓ

where, (a) follows as ∥θ∗∥Λℓ
=
√

θ⊤
∗ Λℓθ∗ = ∥Λ1/2

ℓ θ∗∥ and similarly for∥∥∥w⊤V−1
ℓ Λ

1/2
ℓ

∥∥∥. Now consider the second term in the r.h.s. of (D.6). We
have:

∣∣w⊤V−1
ℓ ¸ℓ

∣∣ =
∣∣∣∣∣∣

τℓ∑
s=τℓ−1+1

(
w⊤V−1

ℓ ws

)
ηs

∣∣∣∣∣∣ .
Now note that the arms (ws) selected by the algorithm during phase ℓ
only depend on the proportion bG∗ (the G-optimal design) and do not
depend on the rewards received during the phase ℓ− 1. Thus, given Fj−2,
the sequence (ws)τℓ−1+1⩽s<τℓ is deterministic. Consequently, one may use
a variant of Azuma’s inequality (Shamir (2011)) with a 1-sub Gaussian
assumption:

P

∣∣w⊤V−1
ℓ ¸ℓ

∣∣2 ⩽ 28× 2 log(2/δ)×w⊤V−1
ℓ

 τℓ∑
s=τℓ−1+1

wsw⊤
s

V−1
ℓ w | Fℓ−2


⩾ 1 − δ,

from which we deduce:

P
(∣∣w⊤V−1

ℓ ¸ℓ
∣∣2 ⩽ 56w⊤V−1

ℓ w log(2/δ) | Fℓ−2

)
⩾ 1 − δ,
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since
∑τℓ
s=τℓ−1+1 wsw⊤

s ≺ Vℓ. Thus:

P
(∣∣w⊤V−1

ℓ ¸ℓ
∣∣ ⩽ 2∥w∥V−1

ℓ

√
14 log(2/δ)

)
⩾ 1 − δ

Combining everything we get that

P
(∣∣∣w⊤

(
θ̂ℓ − θ∗

)∣∣∣ ⩽ 2
√

14 log(2/δ) + ∥θ∗∥Λℓ

)
⩽ 1 − δ.

We need to change Lemma 6 of Valko et al. (2014) in the following way
so that the dependence on horizon n is replaced by τGℓ−1. Note that τGℓ−1 is
the phase length in the ℓ− 1-th phase and is determined before the start
of phase τGℓ−1. Also, note that using the standard analysis of phase-based
algorithms in Fiez et al. (2019); Lattimore and Szepesvári (2020a) we do
not re-use data between phases. First, we need the following support
lemma from Valko et al. (2014).

Lemma D.10. (Restatement of Lemma 4 from Valko et al. (2014)) Let
Λℓ = diag

(
λ1, . . . , λ⊥ℓ

)
be any diagonal matrix with strictly positive entries.

Define Vℓ = Λℓ +
∑τGℓ
s=τGℓ−1+1 wsw⊤

s . Then for any vectors (ws)τGℓ−1+1⩽s⩽τGℓ
,

such that ∥ws∥2 ⩽ 1 for all rounds s such that τGℓ−1 + 1 ⩽ s ⩽ τGℓ , we have that
the determinant |Vℓ| is maximized when all ws are aligned with the axes.

Lemma D.11. Let k be the effective dimension. Then

log |Vℓ|
|Λℓ|

⩽ 8k log
(

1 +
τGℓ−1
λ

)

when λ⊥ℓ =
τGℓ−1

k log(1+τGℓ−1/λ)
.
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Proof. We want to bound the determinant |Vℓ| under the coordinate con-
straints ∥wt∥2 ⩽ 1. Let:

M (w1, . . . , wt) =

∣∣∣∣∣∣Λℓ +
τGℓ∑

s=τGℓ−1+1

wsw⊤
s

∣∣∣∣∣∣
From Theorem D.10 we deduce that the maximum of M is reached when
all ws are aligned with the axes. Let the number of samples of these axes-
aligned ws’s during the ℓ-th phase be denoted as tℓ1, tℓ2, . . . , tℓp such that∑p
i=1 t

ℓ
i = τ

G
ℓ . Then we can show that

M
(a)
= max

w1,...,wt;ws∈{e1,...,ep}

∣∣∣∣∣∣Λℓ +
τGℓ∑

s=τGℓ−1+1

wsw⊤
s

∣∣∣∣∣∣
(b)
= max
tℓ1,...,tℓp, positive integers,

∑p
i=1 t

ℓ
i=τ

G
ℓ

∣∣diag
(
λi + t

ℓ
i

)∣∣
(c)

⩽ max
tℓ1,...,tℓp, positive integers,

∑p
i=1 t

ℓ
i=τ

G
ℓ

p∏
i=1

(
λi + t

ℓ
i

)
where, (a) follows from Theorem D.10, (b) follows as the diag

(
λi + t

ℓ
i

)
contains the number of times axis-aligned ws ∈ {e1, . . . , ep} are observed,
and (c) follows as the determinant of a diagonal matrix is the product of
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the diagonal elements. Now we can show that

log |Vℓ|
|Λℓ|

⩽
k∑
i=1

log
(

1 +
tℓi
λ

)
+

p∑
i=k+1

log
(

1 +
tℓi
λi

)
(a)

⩽ k log
(

1 +
tℓi
λ

)
+

p∑
i=1

tℓ−1
i

λ⊥ℓ

(b)

⩽ k log
(

1 +
tℓi
λ

)
+
τGℓ−1
λ⊥ℓ

(c)

⩽ k log
(

1 +
tℓi
λ

)
+ k log

(
1 +

τGℓ−1
λ

)
(d)

⩽ 8k log
(

1 +
τGℓ−1
λ

)
where, (a) follows as log(1 + tℓi/λi) ⩽ tℓ−1

i /λ⊥ℓ , (b) follows as
∑p
i=1 t

ℓ−1
i =

τGℓ−1, and (c) follows for λ⊥ℓ =
τGℓ−1

k log(1+τGℓ−1/λ)
and (d) follows from Theo-

rem D.12.

Lemma D.12. Let ρG(Y(Wℓ)) = minbw maxw,w ′∈Wℓ
∥w−w ′∥2

(
∑

w∈W bww w⊤+Λℓ/n)−1 .

Recall that τGℓ =
8Bℓ∗ρG(Y(Wℓ)) log(4ℓ2|W|/δ)

ϵ2
ℓ

. Assume log(p) ⩽ k. Then we can
show that

log
(

1 +
τGℓ
λ

)
⩽ 8k log

(
1 +

τGℓ−1
λ

)
.

Proof. We start by first recalling the definition of

τGℓ = 2ϵ−2
ℓ 8k log(1 +

τGℓ−1
λ

)ρG(Y(Wℓ)) log
(
4ℓ2|W|/δℓ

)
.
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Then we can show the following

τGℓ
τGℓ−1

=
2ϵ−2
ℓ B

ℓ
∗ρ
G(Y(Wℓ)) log

(
4ℓ2|W|/δℓ

)
2ϵ−2
ℓ−1B

ℓ−1
∗ ρG(Y(Wℓ−1)) log (4(ℓ− 1)2|W|/δℓ)

⩽
4ρG(Y(Wℓ))

(
64(λS2 + λ⊥ℓ S

(2),ℓ
⊥ )

)
ρG(Y(Wℓ−1))

(
64(λS2 + λ⊥ℓ−1S

(2),ℓ−1
⊥ )

)
⩽

4ρG(Y(Wℓ))τ
G
ℓ−1/ log(1 +

τGℓ−1
λ

)

ρG(Y(Wℓ−1))τ
G
ℓ−2/ log(1 +

τGℓ−2
λ

)

(a)

⩽
4ρG(Y(Wℓ))τ

G
ℓ−1 log(1 +

τGℓ−1
λ

)

ρG(Y(Wℓ−1))
(b)

⩽
4p
γ2
Y

maxw∈W ∥w∥2

maxy∈Y(Wℓ) ∥y∥2
2
τGℓ−1 log(1 +

τGℓ−1
λ

) =
4p
Cγ2

Y

where, (a) follows as log(1 +
τGℓ−2
λ

) ⩾ 1 and log(1 +
τGℓ−1
λ

) ⩾ log(1 +
τGℓ−2
λ

).
The (b) follows using Lemma 1 from Fiez et al. (2019) such that

max
y∈Y(Wℓ)

∥y∥2
2/

(
max
w∈W

∥w∥2

)
⩽ ρG(Y(Wℓ)) ⩽ p/γ

2
Y

(a1)
=⇒ 1 ⩽ ρG(Y(Wℓ)) ⩽ p/γ

2
Y.

where, (a1) follows as ∥x∥ ⩽ 1, ∥z∥ ⩽ 1. This implies that for a constant
C > 0

τGℓ ⩽
4p
Cγ2

Y

(τGℓ−1)
2 log(1 +

τGℓ−1
λ

)

=⇒ log
(

1 +
τGℓ
λ

)
⩽ log

(
1 +

4p
Cγ2

Y

(τGℓ−1)
2 log(1 +

τGℓ−1
λ

)

)
(a)
=⇒ log

(
1 +

τGℓ
λ

)
⩽ 4k log

(
1 +

τGℓ−1
Cγ2

Yλ

)
(b)
=⇒ log

(
1 +

τGℓ
λ

)
⩽ 8k log

(
1 +

τGℓ−1
λ

)
where, in (a) follows for log(p) ⩽ k, log(a2 log(a)) ⩽ 4 log(a). The (b)
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follows as 4k log
(

1 +
τGℓ−1
Cγ2

Yλ

)
⩽ 8k log

(
1 +

τGℓ−1
λ

)
.

Lemma D.13. The G-optimal design in (5.5) is equivalent to solving the D-
optimal design

bDℓ = argmax
b

log

∣∣∣∑w∈Wℓ
bww w⊤ +Λℓ

∣∣∣
|Λℓ|

.

Furthermore, the support of |bDℓ | ⩽
8k log(1+

τG
ℓ−1
λ )(8k log(1+

τG
ℓ−1
λ )+1)

2 , where k =

(d1 + d2)r.

Proof. To prove the equivalence between bG∗ and bD∗ we need to first show
that the regularization matrix Λℓ does not depend on w or y = w − w ′,
where w ∈Wℓ. Define conv(X ∪−X) as the convex hull of X ∪−X. Now
recall we have from Lemma 1 of Fiez et al. (2019) that

1 ⩽ ρG(Y(Wℓ)) ⩽ p/γ
2
Y (D.7)

where, γY = max{c > 0 : cY ⊂ conv(Wℓ ∪ −Wℓ)} as the gauge norm of
Y (Rockafellar, 2015). We can consider the gauge norm γY as a problem-
dependent constant. Now recall that

λℓ⊥ =
τGℓ−1

8k log(1 +
τGℓ−1
λ

)
⩽ 2τGℓ−1 ⩽

64Bℓ−1
∗ ρG(Y(Wℓ−1)) log(4(ℓ− 1)2|W|/δℓ)

ϵ2
ℓ−1

(a)

⩽
64(Bℓ−1

∗ )2p log(4(ℓ− 1)2|W|/δℓ)

γ2
Yϵ

2
ℓ−1

(b)

⩽

(
256(λS2 + 8p2r)

)
log(4(ℓ− 1)2p|W|/δℓ)

Srγ
2
Yϵ

2
ℓ−1

where, (a) follows from (D.7) and noting that Bℓ−1
∗ ⩽ (Bℓ−1

∗ )2. The (b)

follows as S⊥ℓ := 8pr
τEℓ S

2
r

log
(
d1+d2
δℓ

)
, p = d1d2 and substituting this value
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and λℓ⊥ in Bℓ∗ we get

Bℓ∗ ⩽ (Bℓ∗)
2 ⩽

(
256(λS2 + λℓ⊥S

(2),ℓ
⊥ )

)
⩽

(
256

(
λS2 +

8pr
S2
r

τGℓ−1
τEℓ
· log(4(ℓ− 1)2|W|/δℓ) log(d1 + d2/δℓ)

))
⩽

(
256

(
λS2 +

8pr
S2
r

ρGℓ−1(W) log(p|W|/δℓ)

))
(a)

⩽
(
512

(
λS2 + 8p2r

)
/Sr
)

.

Here Sr is the r-th larget eigenvalue of matrix Θ∗. Substituting this value
of λ⊥ℓ we can show that Λℓ does not depend on w or y = w − w ′. The rest
of the proof to show equivalence follows the same way as in Theorem 21.1
in Lattimore and Szepesvári (2020a).

To bound the support of bD∗ we proceed as follows: Define the set
Y(Wℓ) as the set of all arms containing y = w−w ′ ∈ Rp. Then we can use
Lemma 7 of Soare et al. (2014) to show that the solution to

max
y∈Y(Wℓ)

∥y∥2
(
∑

w∈Wℓ
bww w⊤+Λℓ)

−1 = max
w,w ′
∥w − w ′∥2

(
∑

w∈Wℓ
bwww⊤+Λℓ)

−1

has a support of atmost (k1 + 1)k1/2 where k1 = 8k log(1 + τGℓ−1/λ). The
proof follows from the fact that for any pair (w, w′) we can show that

∥w − w′∥
(
∑

w∈Wℓ
bwww⊤+Λ)

−1 ⩽ 2 max
w′′∈Wℓ

∥w′′∥
(
∑

w∈W bww w⊤+Λℓ)
−1 .

Then following the work of Jamieson and Jain (2022) Frank-Wolfe algo-
rithm (in section 2.3.1) with the

g(b) = log

∣∣∣∑w∈Wℓ
bww w⊤ +Λℓ

∣∣∣
|Λℓ|

= log

∣∣∣∣∣∣
∑

w∈Wℓ

bww w⊤ +Λℓ

∣∣∣∣∣∣− log |Λℓ|,
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and setting for the j-th iteration of the Frank-Wolfe the

Ij = argmax
y∈Y(Wℓ)

∥y∥2
(
∑

w∈Wℓ
bjww w⊤+Λℓ)

−1 ,

and stopping condition

max
y∈Y(Wℓ)

∥y∥2
(
∑

w∈Wℓ
bjww w⊤+Λℓ)

−1 ⩽ 8k log(1 +
τGℓ−1
λ

) (D.8)

This can be done because note that for any b ∈ △Wℓ
we have by

Kiefer-Wolfowitz Theorem (Kiefer and Wolfowitz, 1960) that [∇g(b)]y =

∥y∥2
(
∑

x∈X bxxx⊤+Λ)
−1 ⩾ 8k log(1+ τGℓ−1

λ
). This is because Λℓ does not depend

on w or y by the same logic as discussed before. The rest of the proof fol-
lows by the same way as in section 2.3.1 in Jamieson and Jain (2022). This
will result in a support size of b at most 8k log(1 + τGℓ−1

λ
)(8k log(1 + τGℓ−1

λ
) +

1)/2 following Lemma 7 of Soare et al. (2014). Hence, it follows that solving

the eq. (5.5) will result in a support of |bDℓ | ⩽
8k log(1+

τG
ℓ−1
λ )(8k log(1+

τG
ℓ−1
λ )+1)

2 .

Proposition 1. If bGℓ is theG-optimal design for Wℓ then if we pull arm w ∈Wℓ

exactly
⌈
τGbGℓ

⌉
times for some τGℓ > 0 and compute the least squares estimator

θ̂ℓ. Then for each w ∈Wℓ we have with probability at least 1 − δ

P
( ⋃

w∈Wℓ

{ ∣∣∣〈w, θ̂ℓ − θ∗
〉∣∣∣ ⩽

√√√√64Bℓ∗k log(1 +
τGℓ−1
λ

) log (2|W|/δℓ)

τGℓ

})
⩾ 1 − δℓ.

where, ∥θ∗∥Λ ⩽
√
λ ∥θ1:k∥2

2 + λ
⊥
ℓ ∥θk+1:p∥2

2 ⩽
√
λS +

√
λ⊥ℓ S

ℓ
⊥, Bℓ∗=

√
λS +√

λ⊥ℓ S
⊥
ℓ .

Proof. From Woodbury Matrix Identity we know that for any arbitrary
matrix A and B, we have the following identity (A + B)−1 = A−1 −
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(
A + AB−1A

)−1. It follows then that

w⊤(A + B)−1w = w⊤
(

A−1 −
(
A + AB−1A

)−1
)

w ⩽ w⊤A−1w = ∥w∥A−1 .

Hence we can show that,

∥w∥
(
∑

w∈Wℓ
⌈τGℓ bGℓ ⌉w w⊤+Λℓ)

−1 ⩽ w⊤

 ∑
w∈Wℓ

⌈τGℓ bGℓ ⌉w w⊤

−1

w. (D.9)

From Theorem D.13 we know the support of bGℓ is less than

8k log(1 +
τGℓ−1
λ

)(8k log(1 +
τGℓ−1
λ

) + 1)
2 ⩽ (8k log(1 +

τGℓ−1
λ

))2.

Also note that ∥θ∗∥Λℓ
⩽
√
λ ∥θ1:k∥2

2 + λ
ℓ
⊥ ∥θk+1:p∥2

2 ⩽
√
λS +

√
λℓ⊥S

ℓ
⊥.

Then we can show that〈
w, θ̂ℓ − θ∗

〉
⩽ ∥w∥

(
∑

w∈Wℓ
⌈τGℓ bGℓ ⌉w w⊤+Λ)

−1

(
2
√

14 log(2/δℓ) +
√
λS+

√
λℓ⊥S

ℓ
⊥

)
⩽

1√
τGℓ
∥w∥

(
∑

w∈Wℓ
bℓ∗w w⊤+Λ)

−1

(
2
√

14 log(2/δℓ) +
√
λS+

√
λℓ⊥S

ℓ
⊥

)
(a)

⩽

√√√√56× 8k log(1 +
τGℓ−1
λ

) log(2/δℓ)
τGℓ

+

√√√√28k log(1 +
τGℓ−1
λ

) log(2/δℓ)
τGℓ

(
√
λS+

√
λℓ⊥S

ℓ
⊥)

=

√√√√8k log(1 +
τGℓ−1
λ

) log(2/δℓ)
τGℓ

√56 +
√
λS+

√
λℓ⊥S

ℓ
⊥︸ ︷︷ ︸

Bℓ∗


⩽

√√√√64Bℓ∗k log(1 +
τGℓ−1
λ

) log(2/δℓ)
τGℓ
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where, (a) follows as ∥w∥
(
∑

w∈Wℓ
bGℓ,ww w⊤+Λℓ)

−1 ⩽ (8k log(1 + τGℓ−1/λ))
2.

Thus we have taken at most τGℓ +
8k log(1+

τG
ℓ−1
λ )(8k log(1+

τG
ℓ−1
λ )+1)

2 pulls. Thus,
for any δ ∈ (0, 1) we have

P
( ⋃

w∈Wℓ

{ ∣∣∣〈w, θ̂ℓ − θ∗
〉∣∣∣ ⩾

√√√√64kBℓ∗ log(1 +
τGℓ−1
λ

) log (2|W|/δℓ)

τGℓ

})
⩽ δℓ.

The claim of the lemma follows.

Discussion 3. (Phase Length) It follows from Proposition 1 that if the
gaps are known, one can set the phase length as

τGℓ =
64Bℓ∗ρ(Y(Wℓ)) log (2|W|/δ)

(w⊤(θ̂ℓ − θ∗))2

since 8k log(1 +
τGℓ−1
λ

) ⩽ ρ(Y(Wℓ)) := 8k log(1 +
τGℓ
λ
) to guarantee that the

event
⋃

w∈Wℓ

{ ∣∣∣〈w, θ̂ℓ − θ∗
〉∣∣∣ holds with probability greater than 1 − δ.

However, since in practice, the gaps are not known, for an agnostic
algorithm that does not know the gaps, one can set a proxy for the gap as
ϵℓ (for some ϵℓ > 0) and get the phase length as follows:

τGℓ =
64Bℓ∗ρ(Y(Wℓ)) log (2|W|/δ)

ϵ2
ℓ

.

This gives us the desired phase length so that the event
⋃

w∈Wℓ

{ ∣∣∣〈w, θ̂ℓ − θ∗
〉∣∣∣

holds with probability greater than 1 − δ.

Lemma D.14. Assume that maxw∈W ⟨w∗ − w,θ∗⟩ ⩽ 2. With probability at
least 1 − δ, we have w∗ ∈Wℓ and maxw∈Wℓ

⟨w∗ − w,θ∗⟩ ⩽ 4ϵℓ for all ℓ ∈ N.
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Proof. For any V ⊆Wℓ be the active set and w ∈ V define

Ew,ℓ(V) =
{∣∣∣〈w − w∗, θ̂ℓ(V) − θ∗

〉∣∣∣ ⩽ ϵℓ} (D.10)

where it is implicit that θ̂ℓ := θ̂ℓ(V) is the design constructed in the algo-
rithm at stage ℓwith respect to Wℓ = V. Also note that δℓ = δ

4ℓ2 . Given Wℓ,
with probability at least 1 − 2 · δ

4ℓ2|W|

∣∣∣〈w − w∗, θ̂ℓ − θ∗
〉∣∣∣

(a)

⩽

√
64Bℓ∗k log(1 +

τGℓ−1
λ

) log (4ℓ2|W|/δ)

⩽
(k log(1 +

τGℓ−1
λ

))2√
τGℓ

√
64Bℓ∗ log (4ℓ2|W|/δ)

(b)

⩽

√√√√ ∥w − w∗∥
2
(
∑

w∈V bGℓ,w(V)w w⊤+Λℓ)
−1

64Bℓ∗ϵ−2
ℓ ρ(Y(Wℓ)) log (4ℓ2|W|/δ)

√
64Bℓ∗ log (4ℓ2|W|/δ)

⩽

√√√√∥w − w∗∥
2
(
∑

w∈V bGℓ,w(V)w w⊤+Λℓ)
−1

ϵ−2
ℓ ρ(Y(Wℓ)) log (4ℓ2|W|/δ)

√
log (4ℓ2|W|/δ)

(c)
= ϵℓ

where, (a) follows Proposition 1. The (b) follows as

(k log(1+
τGℓ−1
λ

))2 ⩽ (k log(1+τ
G
ℓ

λ
))2 := ρ(Y(Wℓ)) = ∥w − w∗∥

2
(
∑

w∈V bGℓ,w(V)w w⊤+Λℓ)
−1 .

The (c) follows as ρ(Y(Wℓ)) = ∥w − w∗∥
2
(
∑

w∈V bGℓ,w(V)w w⊤+Λℓ)
−1 . By exactly
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the same sequence of steps as above, we have

P

 ∞⋂
ℓ=1

⋂
w∈Wℓ

{∣∣∣〈w − w∗, θ̂t − θ∗
〉∣∣∣ > ϵt}

 = P

 ⋂
w∈Wℓ

∞⋂
ℓ=1

Ew,ℓ (Wℓ)

 ⩾ 1−δ,

so assume these events hold. Consequently, for any w′ ∈Wℓ〈
w′ − w∗, θ̂ℓ

〉
=
〈

w′ − w∗, θ̂ℓ − θ∗
〉
+ ⟨w′ − w∗,θ∗⟩

⩽
〈

w′ − w∗, θ̂ℓ − θ∗
〉

⩽ ϵℓ

so that w∗ would survive to round ℓ+ 1. And for any w ∈Wℓ such that
⟨w∗ − w,θ∗⟩ > 2ϵℓ we have

max
w′∈Wℓ

〈
w′ − w, θ̂ℓ

〉
⩾
〈

w∗ − w, θ̂ℓ
〉

=
〈

w∗ − w, θ̂ℓ − θ∗
〉
+ ⟨w∗ − w,θ∗⟩

> −ϵℓ + 2ϵℓ
= ϵℓ

which implies this w would be eliminated. Note that this implies that
maxw∈Wℓ+1 ⟨w∗ − w,θ∗⟩ ⩽ 2ϵℓ = 4ϵℓ+1. Hence, the claim of the lemma
follows.

Final Sample Complexity Bound for Single Task Setting

Theorem 1. (Restatement) With probability at least 1 − δ, GOBLIN returns
the best arms x∗, z∗, and the number of samples used is bounded by

Õ

(
(d1 + d2)r

∆2 +

√
d1d2r

Sr

)
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where, ∆ = minx∈X\{x∗},z∈Z\{z∗}(x⊤
∗ Θ∗z∗ − x⊤Θ∗z), and Sr is the r-th largest

singular value of Θ∗.

Proof. For the rest of the proof we have that the good events Fℓ
⋂
Ew,ℓ(Wℓ)

holds true for each phase ℓ with probability greater than (1 − δ). The two
events are defined in (D.4) and (D.10).

Second Stage: Define Aℓ = {w ∈Wℓ : ⟨w∗ − w,θ∗⟩ ⩽ 4ϵℓ}. Note that
by assumption W = W1 = S1. The above lemma implies that with proba-
bility at least 1 − δwe have

⋂∞
ℓ=1 {Wℓ ⊆ Aℓ}. This implies that

ρG (Wℓ) = min
b∈∆W

max
w,w′∈Wℓ

∥w − w′∥2
(
∑

w∈W bww w⊤+Λ)
−1

⩽ min
b∈∆W

max
w,w′∈Aℓ

∥w − w′∥2
(
∑

w∈W bww w⊤+Λ)
−1

= ρG (Aℓ) .

Define kℓ1 = 8k log(1 + τGℓ−1/λ). For ℓ ⩾
⌈
log2

(
4∆−1)⌉we have that Aℓ =
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{w∗}, thus, the sample complexity to identify w∗ is equal to

⌈log2(4∆−1)⌉∑
ℓ=1

∑
w∈W

⌈
τGℓ b̂

G
ℓ,w

⌉
=

⌈log2(4∆−1)⌉∑
ℓ=1

(
(kℓ1 + 1)kℓ1

2 + τGℓ

)

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
(kℓ1 + 1)kℓ1

2 + 2ϵ−2
ℓ ρ

G(Wℓ)B
ℓ
∗ log

(
4kℓ1ℓ2|W|/δ

))
(a)

⩽ 2
⌈log2(4∆−1)⌉∑

ℓ=1

(
(k+ 1)k

2 log2(1 + τGℓ−1) + 2ϵ−2
ℓ ρ

G(Wℓ)B
ℓ
∗ log

(
4kℓ1ℓ2|W|/δ

))
(b)

⩽ 2(k+ 1)k
2

⌈log2(4∆−1)⌉∑
ℓ=1

(
log2(1 + τGℓ−1) + 8ϵ−2

ℓ ρ
G(Wℓ)B

ℓ
∗ log

(
4kℓ1ℓ2|W|/δ

))
(c)

⩽ (k+ 1)k
⌈log2(4∆−1)⌉∑

ℓ=1

(
1 + 16ϵ−2

ℓ ρ
G(Wℓ)B

ℓ
∗ log2 (4kℓ1ℓ2|W|/δ

))
(d)

⩽ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

32ϵ−2
ℓ f (Aℓ)B

ℓ
∗ log

(
4kℓ2|W|/δ

)
(e)

⩽ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

32ϵ−2
ℓ f (Aℓ) (64λS2 + 64τGℓ−1) log

(
4kℓ2|W|/δ

)

= (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

32ϵ−2
ℓ f (Aℓ) (64λS2) log

(
4kℓ2|W|/δ

)

+ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

32ϵ−2
ℓ f (Aℓ) (64τGℓ−1) log

(
4kℓ2|W|/δ

)
(f)

⩽ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

64ϵ−2
ℓ f (Aℓ) (64λS2) log

(
4kℓ2|W|/δ

)

⩽ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ 2048λS2 log

(
4k log2

2
(
8∆−1) |W|

δ

) ⌈log2(4∆−1)⌉∑
ℓ=1

22ℓf (Aℓ)
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where, (a) follows as log2(1 + τGℓ−1/λ) ⩽ log2(1 + τGℓ−1), (b) follows by
noting that log(x log(1 + x)) ⩽ 2 log(x) for any x > 1. The (c) follows by
subsuming the log2(1+τGℓ−1) into 2τGℓ . The (d) follows as log(1+τGℓ−1) < τ

G
ℓ

which enables us to replace the kℓ1 inside the log with an additional factor
of 2. The (e) follows by noting that

Bℓ∗ ⩽ 64(
√
λS+

√
λ⊥ℓ S

⊥
ℓ )

⩽ 64λS2 +

(
64τGℓ−1

8(d1 + d2)r log(1 +
τGℓ−1
λ

)

)
·
(

8d1d2r

τEℓ S
2
r

log
(
d1 + d2

δℓ

))
(a1)

⩽ 64λS2 + 64τGℓ−1. (D.11)

where, (a1) follows by first substituting the value of τEℓ :=

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr

and noting that
√
(d1d2r) ⩽ (d1 + d2)r and cancelling out the other terms.

Finally the (f) follows by subsuming the τGℓ−1 with a factor of 2 into the
quantity of τGℓ . Then it follows that
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ρG∗ = inf
b∈△W

max
w∈W

∥w − w∗∥
2
(
∑

w∈W bww w⊤+Λ)
−1

(⟨w − w∗,θ∗⟩)2

= inf
b∈△W

max
ℓ⩽⌈log2(4∆−1)⌉

max
w∈Aℓ

∥w − w∗∥
2
(
∑

w∈W bww w⊤+Λ)
−1

(⟨w − w∗,θ∗⟩)2

⩾
1⌈

log2 (4∆−1)
⌉ inf

b∈△W

⌈log2(4∆−1)⌉∑
ℓ=1

max
w∈Aℓ

∥w − w∗∥
2
(
∑

w∈W bww w⊤+Λ)
−1

(⟨w − w∗,θ∗⟩)2

⩾
1

16
⌈
log2 (4∆−1)

⌉ ⌈log2(4∆−1)⌉∑
ℓ=1

22ℓ inf
b∈△W

max
w∈Aℓ

∥w − w∗∥
2
(
∑

w∈W bww w⊤+Λ)
−1

⩾
1

64
⌈
log2 (4∆−1)

⌉ ⌈log2(4∆−1)⌉∑
ℓ=1

22ℓ inf
b∈△W

max
w,w′∈Aℓ

∥w − w′∥2
(
∑

w∈W bww w⊤+Λ)
−1

⩾
1

64
⌈
log2 (4∆−1)

⌉ ⌈log2(4∆−1)⌉∑
ℓ=1

22ℓf (Aℓ) .

This implies that

⌈log2(4∆−1)⌉∑
ℓ=1

22ℓf (Aℓ) ⩽ ρ
G
∗ 64

⌈
log2

(
4∆−1)⌉

Plugging this back we get

⌈log2(4∆−1)⌉∑
ℓ=1

∑
w∈W

⌈
τGℓ b̂ℓ,w

⌉
⩽ (k+ 1)k

⌈
log2

(
4∆−1)⌉+ 2048λS2 log

(
8k log2

2
(
8∆−1) |W|

δ

)
ρG∗ 64

⌈
log2

(
4∆−1)⌉

⩽ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ C2λS

2 log
(

8k log2
2
(
8∆−1) |W|

δ

)
ρG∗
⌈
log2

(
4∆−1)⌉
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for some constant C2 > 0. Now to understand the bound we need the
following: Let conv(W ∪−W) denote the convex hull of W ∪−W, and for
any set Y ⊂ Rp define the gauge of Y

γY = max{c > 0 : cY ⊂ conv(W ∪−W)} (D.12)

In the case where Y is a singleton Y = {y},γ(y) := γY is the gauge norm of
y with respect to conv(W ∪−W). We can provide a natural upper bound
for ρ(Y) in terms of the gauge. Observe that

ρG∗ = inf
b∈△W

max
y∈Y
∥y∥2

(
∑

w∈W bww w⊤+Λ)
−1

=
1
γ2
Y

inf
b∈△W

max
y∈Y
∥yγY∥2

(
∑

w∈W bww w⊤+Λ)
−1

⩽
1
γ2
Y

inf
b∈△W

max
w∈conv(W

⋃
−W)
∥w∥2

(
∑

w∈W bww w⊤+Λ)
−1

(a)
=

1
γ2
Y

inf
b∈△W

max
w∈W

∥w∥2
(
∑

w∈W bww w⊤+Λ)
−1

(b)

⩽ k3/2

⩽
k

γ2
Y

O

(
B∗ log

(
k log2

(
∆−1) |W|

δ

)⌈
log2

(
∆−1)⌉)

The (a) follows from the fact that the maximum value of a convex func-
tion on a convex set must occur at a vertex. The (b) follows from Kiefer-
wolfowitz theorem for w ∈ Rp such that infb∈△W

maxw∈W ∥w∥2
(
∑

w∈W bww w⊤+Λ)
−1 ⩽

k log(1 +
τGℓ−1
λ

). The simplified sample complexity for the second stage is
given by

N2 ⩽ O

(
k

∆2 log
(
k log2

(
∆−1) |W|

δ

))
= Õ

(
(d1 + d2)r

∆2

)

where∆ = minw∈W(w∗−w)⊤θ∗
(a1)
= minx∈X\{x∗},z∈Z\{z∗}(x⊤

∗ Θ∗z∗−x⊤Θ∗z).
The (a1) follows by reshaping the arms in W to recover the arms in X and
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Z.
1st Stage: First recall that the E-optimal design in step 3 of Algorithm 5

satisfies the Assumption 12 as the sample distribution D has finite second
order moments. For the first stage first observe that by plugging in the
definition of τEℓ =

√
8d1d2r log(4ℓ2|W|/δ)

Sr
we get

∥∥θ∗
k+1:p

∥∥2
2 =

∑
i>r∧j>r

H2
ij =

∥∥∥(Û⊥
ℓ )

⊤ (U∗S∗V∗⊤) V̂⊥
ℓ

∥∥∥2

F

⩽
∥∥∥(Û⊥

ℓ )
⊤U∗

∥∥∥2

F
∥S∗∥2

2

∥∥∥(V̂⊥
ℓ )

⊤V∗
∥∥∥2

F
⩽ O

(
d1d2r

τEℓ S
2
r

log
(
d1 + d2

δ

))
= O

(√
d1d2r

Sr
log
(
d1 + d2

δ

))

which implies
∥∥θ∗
k+1:p

∥∥
2 = Õ

(√
d1d2r/Sr

)
. Now we bound the sample

complexity from the first stage. From the first stage we can show that we
have for the arm set W

N1 =

⌈log2(4∆−1)⌉∑
ℓ=1

∑
w∈W

⌈
τEℓ b̂

E
ℓ,w

⌉

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
(p+ 1)p

2 + τEℓ

)

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
(p+ 1)p

2 +

√
8d1d2r log (4ℓ2|W|/δ)

Sr

)

⩽ (p+ 1)p
⌈
log2

(
4∆−1)⌉+ 32

√
d1d2r

Sr
log
(

4 log2
2
(
8∆−1) |W|

δ

)⌈
log2

(
4∆−1)⌉

(a)
= O

(√
d1d2r

Sr
log
(

4 log2
2
(
8∆−1) |W|

δ

))
= Õ

(√
d1d2r

Sr

)

where, (a) follows as p = d1d2. Combining N1 and N2 gives the claim of
the theorem.
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D.5 Multi-Task Pure Exploration Proofs
Remark D.15. (Comparison with Du et al. (2023)) In this remark, we
discuss a key comparison of DouExpDes (Du et al., 2023) with GOBLIN. Note
that DouExpDes does not implement the second stage of finding the Sm,∗ ∈
Rk1×k2 for each of the m bilinear bandits. Hence, DouExpDes does not rotate the
arms so that the last (k1 − r) · (k2 − r) components are from the complementary
subspaces of the left and right eigenvectors of Sm,∗. This results in DouExpDes
suffering a sample complexity of Õ(k1k2/∆

2) even though it learns the common
feature extractors shared across the tasks. In contrast GOBLIN uses the second
stage to learn Sm,∗ ∈ Rk1×k2 and reduces the latent bilinear bandits problem of
k1k2 dimension to (k1 + k2)r dimension by rotating the arms so that the last
(k1 − r) · (k2 − r) components are from the complementary subspaces of the left
and right eigenvectors of Sm,∗. Hence, GOBLIN suffers a sample complexity of
Õ((k1 + k2)r/∆

2).

Remark D.16. (Arm set) The observable left and right arm sets X and Z are
common across theM tasks. This leads to each task estimating the same E-optimal
design in line 3 of Algorithm 6 of stage 1. Note that Du et al. (2023) also uses a
similar idea of the same arm set X shared across tasks in the linear bandit setting.
Observe that if each task has access to its own separate arm sets Xm and Zm, then
each of them-tasks has to estimate a separate E-optimal design for the stage 1. This
will lead to the sample complexity of the first stage scaling as Õ(M

√
d1d2/Sr)

instead of Õ(
√
d1d2r/Sr).

Good Event: We first recall the total stage 1 length as

τEℓ :=

√
8d1d2r log(4ℓ2|W|/δℓ)

Sr
.

Then define the good event Fℓ in phase ℓ that GOBLIN has a good estimate
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of Z∗ = 1
M

∑M
m=1 Θm as follows: For any phase ℓ > 0

Fℓ :=

∥∥∥Ẑℓ − µ∗Z∗

∥∥∥2

F
⩽
C1d1d2r log

(
2(d1+d2)
δℓ

)
τEℓ

 , (D.13)

where, C1 = 36
(
4 + S2

0
)
C, ∥X∥F, ∥Θ∗∥F ⩽ S0, some nonzero constant µ∗,

E
[
(Sp(X))2

ij

]
⩽ C, ∀i, j, and Θ̂ℓ is the estimate from (5.8). Then define the

event

F :=

∞⋂
ℓ=1

Fℓ (D.14)

Then we start by modifying Theorem D.3 for the multi-task setting.
We first prove this support lemma for the loss function defined in (5.8).

Lemma D.17. Let L : Rd1×d2 → R is the loss function defined in (5.8). Then
by setting

t =

√
2d1d2C (4 + S2

0) log
(

2 (d1 + d2)

δℓ

)
,

ν =
t

(4 + S0)Cd1d2
√
MτEℓ

=

√√√√ 2 log
(

2(d1+d2)
δℓ

)
MτEℓ d1d2C (4 + S2

0)
,

we have with probability at least 1 − δℓ, it holds that

P

(
∥∇L (µ∗Z∗)∥op ⩾

2t√
MτEℓ

)
⩽ δℓ,

where µ∗ =
2
M

E [⟨Xm, Z∗⟩] > 0, and Xm = xmz⊤
m.

Proof. Let Z∗ = 1
M

∑M
m=1 Θm,∗. Let Xm,i = xm,iz⊤

m,i for i ∈ [τEℓ ]. Based on
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the definition of our loss function L(·) in (5.8), we have that

∇xmL (Z∗) = µ
∗Z∗ −

2
MτEℓ

M∑
m=1

τEℓ∑
i=1

ψ̃ν(rm,i ·Q(xm))

=
2
M

E [⟨Xm,1, Z∗⟩]Z∗ −
2

MτEℓ

M∑
m=1

τEℓ∑
i=1

ψ̃ν (rm,i ·Q (Xm,i))

(a)
=

2
M

E [⟨Xm,1, Z∗⟩Q (Xm,1)] −
2

MτEℓ

M∑
m=1

τEℓ∑
i=1

ψ̃ν (rm,i ·Q (Xm,i))

(b)
=

2
M

E (rm,1 ·Q (Xm,1)) −
1

MτEℓ

M∑
m=1

τEℓ∑
i=1

ψ̃ν (rm,i ·Q (Xm,i))


where we have (a) due to the generalized Stein’s Lemma stated in The-
orem D.1, and (b) comes from the fact that the random noise η1 = y1 −

⟨X1, Z∗⟩ is zero-mean and independent from X1. Therefore, in order to
implement the Theorem D.2, we can see that it suffices to get σ2 defined
as:

σ2 = max


∥∥∥∥∥∥ 2
M

M∑
m=1

τEℓ∑
j=1

E
[
r2
m,jQ (Xm,j)Q (Xm,j)

⊤
]∥∥∥∥∥∥

op

,

∥∥∥∥∥∥ 2
M

M∑
m=1

τEℓ∑
j=1

E
[
r2
m,jQ (Xm,j)

⊤
Q (Xm,j)

]∥∥∥∥∥∥
op

 .
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∥∥∥∥∥∥ 2
M

M∑
m=1

τEℓ∑
j=1

E
[
r2
m,jQ (Xm,j)Q (Xm,j)

⊤
]∥∥∥∥∥∥

op

⩽ τEℓ ×
∥∥∥E [r2

m,1Q (Xm,1)Q (Xm,1)
⊤
]∥∥∥

op

(a)
= τEℓ ×

∥∥∥E [(ηm,1 + ⟨Xm,1, Z∗⟩)2
Q (Xm,1)Q (Xm,1)

⊤
]∥∥∥

op
(b)
= τEℓ × ∥E

[
η2
m,1Q (Xm,1)Q (Xm,1)

⊤
]
+ E [⟨Xm,1, Z∗⟩)2

Q (Xm,1)Q (Xm,1)
⊤
]
∥op

(c)
= τEℓ × ∥E

(
η2
m,1
)
E
[
Q (Xm,1)Q (Xm,1)

⊤
]
+ E [⟨Xm,1, Z∗⟩)2

Q (Xm,1)Q (Xm,1)
⊤
]
∥op

(d)

⩽ τEℓ ×
∥∥∥4E

[
Q (Xm,1)Q (Xm,1)

⊤
]
+ S2

0E
[
Q (Xm,1)Q (Xm,1)

⊤
]∥∥∥

op

=
(
4 + S2

0
)
τEℓ ×

∥∥∥E [Q (Xm,1)Q (Xm,1)
⊤
]∥∥∥

op

where the (a) follows by plugging in the definition for reward, (b) follows
by the linearity of expectation, (c) follows as noises are independent,
and the inequality (d) comes from the fact that |⟨Xm,1, Z∗⟩| ⩽ S0, and
Q (Xm,1)Q (Xm,1)

⊤ is always positive semidefinite. Next, since we know
that E

[
Q (Xm,1)Q (Xm,1)

⊤
]

is always symmetric and positive semidefinite,
and hence we have∥∥∥E [Q (Xm,1)Q (Xm,1)

⊤
]∥∥∥

op
(a)

⩽
∥∥∥E [Q (Xm,1)Q (Xm,1)

⊤
]∥∥∥

nuc
= trace

(
E
[
Q (Xm,1)Q (Xm,1)

⊤
])

= E
[
trace

(
Q (Xm,1)Q (Xm,1)

⊤
)]

= E

(
2
M

M∑
m=1

d1∑
i=1

d2∑
j=1

Qij (Xm,1)
2

)
⩽ d1d2C.

where, in (a) ∥ · ∥nuc denotes the nuclear norm. Therefore, we have that
under 1-subGaussian assumption∥∥∥∥∥∥ 2

M

M∑
m=1

τEℓ∑
j=1

E
[
r2
m,jQ (Xm,j)Q (Xm,j)

⊤
]∥∥∥∥∥∥

op

⩽
(
4 + S2

0
)
d1d2τ

E
ℓC.
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And similarly, we can prove that∥∥∥∥∥∥ 2
M

M∑
m=1

τEℓ∑
j=1

E
[
r2
m,jQ (Xm,j)

⊤
Q (Xm,j)

]∥∥∥∥∥∥
op

⩽
(
4 + S2

0
)
d1d2τ

E
ℓC.

Therefore, we can take σ2 =
(
4 + S2

0
)
d1d2τ

E
ℓC consequently. By using

Theorem D.2, we have

P

(
∥∇L (µ∗Z∗)∥op ⩾

2t√
MτEℓ

)

⩽ 2 (d1 + d2) exp
(
−νt

√
MτEℓ +

ν2 (4 + S2
0
)
Cd1d2τ

E
ℓ

2

)

By plugging the values of t and ν in Theorem D.17, we finish the proof.

Lemma D.18. For any low-rank linear model with samples X1 . . . , XτEℓ drawn
from X according to D then for the optimal solution to the nuclear norm regulariza-
tion problem in (5.2) with ν =

√
2 log (2 (d1 + d2) /δℓ) / ((4 + S2

0)Mτ
E
ℓ d1d2)

and

γℓ = 4

√
2 (4 + S2

0)Cd1d2 log (2 (d1 + d2) /δℓ)

MτEℓ
,

with probability at least 1 − δℓ it holds that:

∥∥∥Ẑℓ − µ∗Z∗

∥∥∥2

F
⩽
C1d1d2r log

(
2(d1+d2)
δℓ

)
MτEℓ

,

for C1 = 36
(
4 + S2

0
)
C, ∥X∥F, ∥Z∗∥F ⩽ S0, some nonzero constant µ∗, and

E
[
(Sp(X))2

ij

]
⩽ C, ∀i, j. Summing over all phases ℓ ⩾ 1 it follows that P(F) ⩾

1 − δ/2.

Proof. Since the estimator Ẑℓ minimizes the regularized loss function de-
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fined in (5.8), we have

L(Ẑℓ) + γℓ∥Ẑℓ∥nuc ⩽ L (µ
∗Z∗) + γℓ ∥µ∗Z∗∥nuc

And due to the fact that L(·) is a quadratic function, we have the following
expression based on multivariate Taylor’s expansion:

L(Ẑℓ) − L (µ
∗Z∗) = ⟨∇L (µ∗Z∗) ,Θ⟩+ 2∥Θ∥2

F, where Θ = Ẑℓ − µ
∗Z∗

By rearranging the above two results, we can deduce that

2∥Θ∥2
F ⩽ − ⟨∇L (µ∗Z∗) ,Θ⟩+ γℓ ∥µ∗Z∗∥nuc − γℓ∥Ẑℓ∥nuc

(a)

⩽ ∥∇L (µ∗Z∗)∥op ∥Θ∥nuc + γℓ ∥µ∗Z∗∥nuc − γℓ∥Ẑℓ∥nuc, (D.15)

where (a) comes from the duality between matrix operator norm and
nuclear norm. Next, we represent the saturated SVD of Z∗ in the main
paper as Z∗ = UDV⊤ where U ∈ Rd1×r and V ∈ Rd2×r, and here we
would work on its full version, i.e.

Z∗ =
(
U,U⊥

)( D 0
0 0

)
(V, V⊥)

⊤
=
(
U,U⊥

)
D∗ (V, V⊥)

⊤

where we have U⊥ ∈ Rd1×(d1−r), D∗ ∈ Rd1×d2 and V⊥ ∈ Rd2×(d2−r). Fur-
thermore, we define

Λ =
(
U,U⊥

)⊤
Θ (V, V⊥) =

(
U

⊤
ΘV U

⊤
ΘV⊥

U
⊤
⊥ΘV U

⊤
⊥ΘV⊥

)
= Λ1 +Λ2

where we write

Λ1 =

(
0 0
0 U

⊤
⊥ΘV⊥

)
, Λ2 =

(
U

⊤
ΘV U

⊤
ΘV⊥

U
⊤
⊥ΘV 0

)
.
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Afterward, it holds that

∥Ẑℓ∥nuc = ∥µ∗Z∗ +Θ∥nuc
(a)
=
∥∥∥(U,U⊥

)
(µ∗D∗ +Λ) (V, V⊥)

⊤
∥∥∥

nuc
(b)
= ∥µ∗D∗ +Λ∥nuc + ∥µ

∗D∗ +Λ1 +Λ2∥nuc

⩾ ∥µ∗D∗ +Λ1∥nuc − ∥Λ2∥nuc

= ∥µ∗D∥nuc + ∥Λ1∥nuc − ∥Λ2∥nuc

= ∥µ∗Z∗∥nuc + ∥Λ1∥nuc − ∥Λ2∥nuc , (D.16)

where, (a) follows from the definition of Z∗, and (b) follows from the
definition of Λ. This implies that

∥µ∗Z∗∥nuc − ∥Ẑℓ∥nuc ⩽ ∥Λ2∥nuc − ∥Λ1∥nuc .

Combining (D.15) and (D.16), we have that

2∥Θ∥2
F ⩽

(
∥∇L (µ∗Z∗)∥op + γℓ

)
∥Λ2∥nuc+

(
∥∇L (µ∗Z∗)∥op − γℓ

)
∥Λ1∥nuc .

Then, we refer to the setting in our Theorem D.17, and we choose γℓ =
4t/
√
MτEℓ where the value of t is determined in Theorem D.17, i.e.

γℓ = 4

√
2 (4 + S2

0)Cd1d2 log (2 (d1 + d2) /δℓ)

MτEℓ
,

we know that λT−1 ⩾ 2 ∥∇L (µ∗Z∗)∥op with probability at least 1 − δℓ for
any δℓ ∈ (0, 1). Therefore, with a probability at least 1 − δℓ, we have

2∥Θ∥2
F ⩽

3
2γℓ ∥Λ2∥nuc −

1
2γℓ ∥Λ1∥nuc ⩽

3
2γℓ ∥Λ2∥nuc .

Since we can easily verify that the rank of Λ2 is at most 2r, and by using
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Cauchy-Schwarz Inequality we have that

2∥Θ∥2
F ⩽

3
2γℓ
√

2r ∥Λ2∥F ⩽
3
2γℓ
√

2r∥Λ∥F =
3
2γℓ
√

2r∥Θ∥F

which implies that

∥Θ∥F ⩽
3
4
√

2rγℓ = 6

√√√√(4 + S2
0)Cd1d2r log

(
2(d1+d2)
δℓ

)
MτEℓ

.

This implies that P(Fℓ) ⩾ 1 − δℓ. Taking a union bound over all phases
ℓ ⩾ 1 and recalling δℓ := δ

2ℓ2 , we obtain

P(F) ⩾ 1 −

∞∑
ℓ=1

P (Fcℓ )

⩾ 1 −

∞∑
ℓ=1

δℓ

2

= 1 −

∞∑
ℓ=1

δ

4ℓ2

⩾ 1 −
δ

2.

This concludes our proof.

Define X+
batch :=

(
X⊤

batch Xbatch
)−1 X⊤

batch where X+
batch is constructed

through the E-optimal design. Using Lemma C.1 from Du et al. (2023) it
holds that

∥X+
batch ∥ ⩽

√
(1 + β)ρEℓ

p
.

where p = 180d1d2/β
2 is the batch size to control the rounding procedure

and ρEℓ =minb∈△W

∥∥(∑w∈W bww w⊤)−1
∥∥. It follows then that ∥X+

batch ∥
2 ⩽

4ρEℓ .
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Lemma D.19. (Expectation of Ẑℓ ). It holds that E
[
Ẑℓ

]
= Z = 1

M

∑M
m=1 Θm.

Proof. Note that we can re-write

Ẑℓ = argmin
Θ∈Rd1×d2

Lℓ(Θ) + γℓ∥Θ∥nuc,Lℓ(Θ)

= ⟨Θ,Θ⟩− 2
MτEℓ

M∑
m=1

τEℓ∑
s=1

⟨ψ̃ν(rm,s ·Q(xm,sz⊤
m,s)),Θ⟩

such that

Ẑℓ =
2

MτEℓ

M∑
m=1

τEℓ∑
s=1

Θ̂m,s − X+
batch (X

+
batch)

⊤

where Θ̂m,s = ⟨Θ,Θ⟩− 2
Ms

∑M
m=1⟨ψ̃ν(rm,s ·Q(xm,sz⊤

m,s)),Θ⟩. Now using
Lemma C.2 from Du et al. (2023) we can prove the result of the lemma.

Lemma D.20. (Concentration of B̂1,ℓ ). Suppose that event Fℓ holds. Then, for
any phase ℓ > 0,

∥∥∥(B̂⊥
1,ℓ)

⊤B1

∥∥∥ ⩽
c ′ρEℓ

√
(d1 + d2)r

Sr
√
MτEℓ

log
(

16(d1 + d2)rMτ
E
ℓ

δℓ

)
,

for some constant c ′ > 0 and ρEℓ =minb∈△W

∥∥(∑w∈W bww w⊤)−1
∥∥.

Proof. Using the Davis-Kahan sin θ Theorem (Bhatia, 2013) and letting τEℓ
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be large enough to satisfy
∥∥∥Ẑℓ − µ∗Z∗

∥∥∥2

F
⩽
C1d1d2r log

(
2(d1+d2)

δℓ

)
MτEℓ

, we have

∥∥∥(B̂⊥
1,ℓ)

⊤B1

∥∥∥ ⩽

∥∥∥Ẑℓ − E
[
Ẑℓ

]∥∥∥
σr

(
E
[
Ẑℓ

])
− σr+1

(
E
[
Ẑℓ

])
−
∥∥∥Ẑℓ − E

[
Ẑℓ

]∥∥∥
(a)

⩽
c0

Sr

∥∥∥Ẑℓ − E
[
Ẑℓ

]∥∥∥
(b)

⩽
cc0 ∥X+

batch ∥
2√

(d1 + d2)r

Sr
√
MτEℓ

log
(

16(d1 + d2)rMτ
E
ℓ

δℓ

)
(c)

⩽
c ′ρEℓ

√
(d1 + d2)r

Sr
√
MτEℓ

log
(

16(d1 + d2)rMτ
E
ℓ

δℓ

)
.

where, (a) follows from Assumption 8, the (b) follows from event Fℓ and
(b) follows as ∥X+

batch ∥
2 ⩽ 4ρEℓ . The claim of the lemma follows.

Lemma D.21. (Concentration of B̂2,ℓ ). Suppose that event Fℓ holds. Then, for
any phase ℓ > 0,

∥∥∥(B̂⊥
2,ℓ)

⊤B2

∥∥∥ ⩽
cρEℓ
√
(d1 + d2)r

Sr
√
MτEℓ

log
(

16(d1 + d2)rMτ
E
ℓ

δℓ

)
,

for some constant c ′ > 0 and ρEℓ =minb∈△W

∥∥(∑w∈W bww w⊤)−1
∥∥.

Proof. The proof follows the same way as Theorem D.20 and using the
Davis-Kahan sin θ Theorem (Bhatia, 2013)

∥∥∥(B̂⊥
2,ℓ)

⊤B2

∥∥∥ ⩽
cρEℓ
√
(d1 + d2)r

Sr
√
MτEℓ

log
(

16(d1 + d2)rMτ
E
ℓ

δℓ

)
.

The claim of the lemma follows.

Good Event per Task: We now define the good event F ′
ℓ in phase ℓ
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that GOBLIN has a good estimate of Sm,∗ as follows: For any phase ℓ > 0

F ′
ℓ :=

∥∥∥Ŝm,ℓ − µ
∗Sm,∗

∥∥∥2

F
⩽
C1k1k2r log

(
2(k1+k2)
δℓ

)
τEm,ℓ

 , (D.17)

where, C,µ∗ > 0 are constants and Ŝm,ℓ is the estimate from (5.9). Then
define the event

F ′ :=

∞⋂
ℓ=1

F ′
ℓ. (D.18)

We now prove the following lemmas to show the good event F ′
ℓ holds

with probability (1 − δℓ). Before proving the concentration of Ŝm,ℓ we first
need to show that σmin(

∑
w̃∈W̃

bw̃w̃w̃⊤) > 0. If this holds true then we
can sample following E-optimal design.

Lemma D.22. For any phase ℓ > 0 and taskm ∈ [M], let
∥∥∥B̂⊤

1,ℓB⊥
1

∥∥∥ ⩽ c1 and∥∥∥B̂⊤
2,ℓB⊥

2

∥∥∥ ⩽ c2, for some c1, c2 > 0. Then we have

σmin(
∑

w̃∈W̃

bw̃w̃w̃⊤) > 0

Proof. We can show that

∑
w̃∈W̃

bw̃w̃w̃⊤ (a)
=

∑
x∈Xm,z∈Zm

bx,z Û⊤
ℓ xm︸ ︷︷ ︸
g̃m

zmV̂⊤
ℓ︸ ︷︷ ︸

ṽ⊤
m

where, in (a) the bx,z is the sampling proportion for the arms x and z (they
are allocated the same proportion, as they are pulled the same number of
times). Also note that from Theorem D.18 we know that

∥∥∥B̂⊤
1,ℓB⊥

1

∥∥∥ ⩽ c1

and
∥∥∥B̂⊤

2,ℓB⊥
2

∥∥∥ ⩽ c2 for some c1, c2 > 0 holds with high probability. This
helps us to apply Theorem D.23 to get the claim of the lemma.



465

Lemma D.23. (Restatement of Lemma C.5 from Du et al. (2023)) For any
phase ℓ > 0 and taskm ∈ [M], if

∥∥∥Û⊤
ℓ U

⊥
∥∥∥ ⩽ c for some c > 0, then we have

σmin

(
n∑
i=1

b∗
m (xi) Û⊤

ℓ xix⊤
i Ûℓ

)
> 0

where b∗
m is a sampling proportion on x.

Lemma D.24. Let L ′ : Rk1×k2 → R is the loss function defined in (5.9). Then
by setting

t =

√
2k1k2C (4 + S2

0) log
(

2 (k1 + k2)

δℓ

)
,

ν =
t

(4 + S0)Ck1k2
√
τEℓ

=

√√√√ 2 log
(

2(k1+k2)
δℓ

)
τEℓ k1k2C (4 + S2

0)
,

we have with probability at least 1 − δℓ, it holds that

P

(
∥∇L ′ (µ∗Sm,∗)∥op ⩾

2t√
τEℓ

)
⩽ δℓ,

where µ∗ = E [⟨Xm, Sm,∗⟩] > 0, and Xm = g̃mṽ⊤
m.

Proof. Let Xm,i = g̃m,iṽ⊤
m,i Based on the definition of our loss function

L ′(·) in (5.9), we have that

∇xmL ′ (Sm,∗) = µ
∗Sm,∗ −

2
τEℓ

τEℓ∑
i=1

ψ̃ν(rm,i ·Q(xm))

(a)
=

E (rm,1 ·Q (Xm,1)) −
1
τEℓ

τEℓ∑
i=1

ψ̃ν (rm,i ·Q (Xm,i))


where (a) follows using the same steps as in Theorem D.17. Similarly,
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using the same steps for a single task as in Theorem D.17 we have

P

(
∥∇L ′ (µ∗Sm,∗)∥op ⩾

2t√
τEℓ

)
⩽ 2 (k1 + k2) exp

(
−νt

√
τEℓ +

ν2 (4 + S2
0
)
Ck1k2τ

E
ℓ

2

)

By plugging the values of t and ν in Theorem D.17, we finish the proof.

Lemma D.25. (Concentration of Ŝm,ℓ) For any low-rank linear model with
samples X1 . . . , XτEℓ drawn from X according to D then for the optimal solution to
the nuclear norm regularization problem in (5.2) with

ν =
√

2 log (2 (k1 + k2) /δℓ) / ((4 + S2
0) τ

E
ℓ k1k2)

and

γm,ℓ = 4

√
2 (4 + S2

0)Ck1k2 log (2 (k1 + k2) /δℓ)

τEm,ℓ
,

with probability at least 1 − δℓ it holds that:

∥∥∥Ŝm,ℓ − µ
∗Sm,∗

∥∥∥2

F
⩽
C1k1k2r log

(
2(k1+k2)
δℓ

)
τEm,ℓ

,

for C1 = 36
(
4 + S2

0
)
C, ∥X∥F, ∥Sm,∗∥F ⩽ S0, some nonzero constant µ∗, and

E
[
(Sp(X))2

ij

]
⩽ C, ∀i, j. Summing over all phases ℓ ⩾ 1 it follows that P(F ′) ⩾

1 − δ/2.

Proof. Since the estimator Ŝm,ℓ minimizes the regularized loss function
defined in Eqn. (6), we have

L(Ŝm,ℓ) + γℓ∥Ŝm,ℓ∥nuc ⩽ L (µ
∗Sm,∗) + γℓ ∥µ∗Sm,∗∥nuc .

And due to the fact that L ′(·) is a quadratic function, we have the following
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expression based on multivariate Taylor’s expansion:

L ′(Ŝm,ℓ)−L
′ (µ∗Sm,∗) = ⟨∇L ′ (µ∗Sm,∗) ,Θ⟩+2∥Θ∥2

F, where Θ = Ŝm,ℓ−µ
∗Sm,∗.

By rearranging the above two results, we can deduce that

2∥Θ∥2
F ⩽ − ⟨∇L ′ (µ∗Sm,∗) ,Θ⟩+ γℓ ∥µ∗Sm,∗∥nuc − γℓ∥Ŝm,∗∥nuc

(i)

⩽ ∥∇L ′ (µ∗Sm,∗)∥op ∥Θ∥nuc + γℓ ∥µ∗Sm,∗∥nuc − γℓ∥Ŝm,ℓ∥nuc,
(D.19)

where (i) comes from the duality between matrix operator norm and
nuclear norm. Next, we represent the saturated SVD of Sm,∗ as Sm,∗ =

UDV⊤ where U ∈ Rk1×r and V ∈ Rk2×r, and here we would work on its
full version, i.e.

Sm,∗ =
(
U,U⊥

)( D 0
0 0

)
(V, V⊥)

⊤
=
(
U,U⊥

)
D∗ (V, V⊥)

⊤

where we have U⊥ ∈ Rk1×(k1−r), D∗ ∈ Rk1×k2 and V⊥ ∈ Rk2×(k2−r). Fur-
thermore, we define

Λ =
(
U,U⊥

)⊤
Θ (V, V⊥) =

(
U

⊤
ΘV U

⊤
ΘV⊥

U
⊤
⊥ΘV U

⊤
⊥ΘV⊥

)
= Λ1 +Λ2

where we write

Λ1 =

(
0 0
0 U

⊤
⊥ΘV⊥

)
, Λ2 =

(
U

⊤
ΘV U

⊤
ΘV⊥

U
⊤
⊥ΘV 0

)
.
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Afterward, it holds that

∥Ŝℓ∥nuc = ∥µ∗Sm,∗ +Θ∥nuc
(a)
=
∥∥∥(U,U⊥

)
(µ∗D∗ +Λ) (V, V⊥)

⊤
∥∥∥

nuc
(b)
= ∥µ∗D∗ +Λ∥nuc + ∥µ

∗D∗ +Λ1 +Λ2∥nuc

⩾ ∥µ∗D∗ +Λ1∥nuc − ∥Λ2∥nuc

= ∥µ∗D∥nuc + ∥Λ1∥nuc − ∥Λ2∥nuc

= ∥µ∗Sm,∗∥nuc + ∥Λ1∥nuc − ∥Λ2∥nuc , (D.20)

where, (a) follows from the definition of Sm,∗, and (b) follows the defini-
tion of Λ. This implies that

∥µ∗Sm,∗∥nuc − ∥Ŝm,ℓ∥nuc ⩽ ∥Λ2∥nuc − ∥Λ1∥nuc .

Combining (D.19) and (D.20), we have that

2∥Θ∥2
F ⩽

(
∥∇L (µ∗B)∥op + γℓ

)
∥Λ2∥nuc +

(
∥∇L (µ∗B)∥op − γℓ

)
∥Λ1∥nuc .

Then, we refer to the setting in our Theorem D.17, and we choose γℓ =
4t/
√
MτEℓ where the value of t is determined in Theorem D.17, i.e.

γℓ = 4

√
2 (4 + S2

0)Ck1k2 log (2 (d1 + d2) /δℓ)

MτEℓ
,

we know that λT−1 ⩾ 2 ∥∇L (µ∗Sm,∗)∥op with probability at least 1 − δℓ

for any δℓ ∈ (0, 1). Therefore, with a probability at least 1 − δℓ, we have

2∥Θ∥2
F ⩽

3
2γℓ ∥Λ2∥nuc −

1
2γℓ ∥Λ1∥nuc ⩽

3
2γℓ ∥Λ2∥nuc .

Since we can easily verify that the rank of Λ2 is at most 2r, and by using
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Cauchy-Schwarz Inequality we have that

2∥Θ∥2
F ⩽

3
2γℓ
√

2r ∥Λ2∥F ⩽
3
2γℓ
√

2r∥Λ∥F =
3
2γℓ
√

2r∥Θ∥F

which implies that

∥Θ∥F ⩽
3
4
√

2rγℓ = 6

√√√√(4 + S2
0)Ck1k2r log

(
2(k1+k2)
δℓ

)
τEℓ

This implies that P(F ′
ℓ) ⩾ 1 − δℓ. Taking a union bound over all phases

ℓ ⩾ 1 and recalling δℓ := δ
2ℓ2 , we obtain

P(F ′) ⩾ 1 −

∞∑
ℓ=1

P ((F ′)cℓ)

⩾ 1 −

∞∑
ℓ=1

δℓ

2

= 1 −

∞∑
ℓ=1

δ

4ℓ2

⩾ 1 −
δ

2.

This concludes our proof.

Final Sample Complexity Bound

We first define the arm elimination event similar to Theorem 1. For any
V ⊆W be the active set and w ∈ V define

Ew,ℓ(V) =
{∣∣∣〈w − w⋆, θ̂ℓ(V) − θ∗

〉∣∣∣ ⩽ ϵℓ} (D.21)

where it is implicit that θ̂ℓ := θ̂ℓ(V) is the design constructed in the algo-
rithm at stage ℓwith respect to Wℓ = V.
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Theorem 2. (Restatement) With probability at least 1−δ, multi-task GOBLIN
returns the best arms x∗, z∗, and the number of samples used is bounded by

Õ

(
M(k1 + k2)r

∆2 +
M
√
k1k2r

Sr
+

√
d1d2r

Sr

)
.

Proof. For the rest of the proof we have that the good eventsFℓ
⋂
F ′
ℓ

⋂
Ew,ℓ(Wℓ)

holds true for each phase ℓwith probability greater than (1− δ). The three
events are defined in (D.13), (D.17) and (D.21).

Third Stage: Define Am,ℓ = {w ∈Wℓ : ⟨w⋆ − w,θ∗⟩ ⩽ 4ϵm,ℓ}. Note
that by assumption W = W1 = A1. The above lemma implies that with
probability at least 1 − δwe have

⋂∞
ℓ=1

{
Wm,ℓ ⊆ Sm,ℓ

}
. This implies that

ρG
(
Wm,ℓ

)
= min

b∈∆Wm

max
w,w′∈Wm,ℓ

∥w − w′∥2
(
∑

w∈W bww w⊤+Λ)
−1

⩽ min
b∈∆Wm

max
w,w′∈Sm,ℓ

∥w − w′∥2
(
∑

w∈W bww w⊤+Λ)
−1

= ρG
(
Am,ℓ

)
.

Let the effective dimension be k = (k1 + k2)r. Define kℓ1 = 8k log(1 +

τGm,ℓ−1/λ). For ℓ ⩾
⌈
log2

(
4∆−1
m

)⌉
we have that Sm,ℓ = {w⋆}, thus, the
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sample complexity to identify w⋆
m is equal to

⌈log2(4∆−1
m )⌉∑

ℓ=1

∑
w∈Wm

⌈
τGm,ℓb̂

G
m,ℓ,w

⌉
=

⌈log2(4∆−1
m )⌉∑

ℓ=1

(
(kℓ1 + 1)kℓ1

2 + τGm,ℓ

)

=

⌈log2(4∆−1
m )⌉∑

ℓ=1

(
(kℓ1 + 1)kℓ1

2 + 2ϵ−2
m,ℓρ

G(Wm,ℓ)B
ℓ
m,∗ log

(
4kℓ1ℓ2|Wm|/δ

))
(a)

⩽ 2
⌈log2(4∆−1

m )⌉∑
ℓ=1

(
(k+ 1)k

2 log2(1 + τGm,ℓ−1) + 2ϵ−2
m,ℓρ

G(Wm,ℓ)B
ℓ
m,∗ log

(
4kℓ1ℓ2|Wm|/δ

))
(b)

⩽ 2(k+ 1)k
2

⌈log2(4∆−1
m )⌉∑

ℓ=1

(
log2(1 + τGm,ℓ−1) + 8ϵ−2

m,ℓρ
G(Wm,ℓ)B

ℓ
m,∗ log

(
4kℓ1ℓ2|Wm|/δ

))
(c)

⩽ (k+ 1)k
⌈log2(4∆−1

m )⌉∑
ℓ=1

(
1 + 16ϵ−2

m,ℓρ
G(Wm,ℓ)B

ℓ
m,∗ log2 (4kℓ1ℓ2|Wm|/δ

))
(d)

⩽ (k+ 1)k
⌈
log2

(
4∆−1
m

)⌉
+

⌈log2(4∆−1
m )⌉∑

ℓ=1

32ϵ−2
m,ℓf

(
Am,ℓ

)
Bℓm,∗ log

(
4kℓ2|Wm|/δ

)
(e)

⩽ (k+ 1)k
⌈
log2

(
4∆−1)⌉

+

⌈log2(4∆−1)⌉∑
ℓ=1

32ϵ−2
ℓ f
(
Am,ℓ

)
(64λS2 + 64τGm,ℓ−1) log

(
4kℓ2|W|/δ

)

= (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

32ϵ−2
ℓ f
(
Am,ℓ

)
(64λS2) log

(
4kℓ2|W|/δ

)

+ (k+ 1)k
⌈
log2

(
4∆−1)⌉+ ⌈log2(4∆−1)⌉∑

ℓ=1

32ϵ−2
ℓ f
(
Am,ℓ

)
(64τGm,ℓ−1) log

(
4kℓ2|W|/δ

)
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(f)

⩽ (k+ 1)k
⌈
log2

(
4∆−1
m

)⌉
+ 2048λS2 log

(
4k log2

2
(
8∆−1
m

)
|Wm|

δ

) ⌈log2(4∆−1
m )⌉∑

ℓ=1

22ℓf
(
Am,ℓ

)
.

where, (a) follows as log2(1 + τGm,ℓ−1/λ) ⩽ log2(1 + τGm,ℓ−1), (b) follows
by noting that log(x log(1 + x)) ⩽ 2 log(x) for any x > 1. The (c) follows
by subsuming the log2(1 + τGm,ℓ−1) into 2τGℓ . The (d) follows as log(1 +

τGm,ℓ−1) < τGℓ which enables us to replace the kℓ1 inside the log with an
addtional factor of 2. The (e) follows similarly to (D.11) by noting that

Bℓm,∗ ⩽ 64(
√
λS+

√
λ⊥m,ℓS

⊥
m,ℓ)

⩽ 64λS2 +

 64τGm,ℓ−1

8(d1 + d2)r log(1 +
τGm,ℓ−1
λ

)

 · (8d1d2r

τEℓ S
2
r

log
(
d1 + d2

δℓ

))
(a1)

⩽ 64λS2 + 64τGm,ℓ−1.

Finally the (f) follows by subsuming the τGℓ−1 with a factor of 2 into the
quantity of τGℓ . Then it follows that

ρGm,∗ = inf
b∈△Wm

max
w∈Wm

∥w − w⋆∥2
(
∑

w∈Wm
bww w⊤+Λ)

−1

(⟨w − w⋆,θ∗⟩)2

= inf
b∈△Wm

max
ℓ⩽⌈log2(4∆−1

m )⌉
max

w∈Sm,ℓ

∥w − w⋆∥2
(
∑

w∈Wm
bww w⊤+Λ)

−1

(⟨w − w⋆,θ∗⟩)2

⩾
1⌈

log2 (4∆−1
m )
⌉ inf

b∈△Wm

⌈log2(4∆−1
m )⌉∑

ℓ=1

max
w∈Am,ℓ

∥w − w⋆∥2
(
∑

w∈Wm
bww w⊤+Λ)

−1

(⟨w − w⋆,θ∗⟩)2

⩾
1

16
⌈
log2 (4∆−1

m )
⌉ ⌈log2(4∆−1

m )⌉∑
ℓ=1

22ℓ inf
b∈△Wm

max
w∈Am,ℓ

∥w − w⋆∥2
(
∑

w∈Wm
bww w⊤+Λ)

−1
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⩾
1

64
⌈
log2 (4∆−1

m )
⌉ ⌈log2(4∆−1

m )⌉∑
ℓ=1

22ℓ inf
b∈△Wm

max
w,w′∈Am,ℓ

∥w − w′∥2
(
∑

w∈Wm
bww w⊤+Λ)

−1

⩾
1

64
⌈
log2 (4∆−1

m )
⌉ ⌈log2(4∆−1

m )⌉∑
ℓ=1

22ℓf
(
Am,ℓ

)
.

This implies that

⌈log2(4∆−1
m )⌉∑

ℓ=1

22ℓf
(
Am,ℓ

)
⩽ ρGm,∗64

⌈
log2

(
4∆−1
m

)⌉
.

Plugging this back we get

⌈log2(4∆−1
m )⌉∑

ℓ=1

∑
w∈Wm

⌈
τGm,ℓb̂ℓ,w

⌉
⩽ (k+ 1)k

⌈
log2

(
4∆−1
m

)⌉
+ 2048λS2 log

(
8k log2

2
(
8∆−1
m

)
|Wm|

δ

)
64ρGm,∗

⌈
log2

(
4∆−1
m

)⌉
⩽ (k+ 1)k

⌈
log2

(
4∆−1
m

)⌉
+ C2λS

2 log
(

8k log2
2
(
8∆−1
m

)
|Wm|

δ

)
ρGm,∗

⌈
log2

(
4∆−1
m

)⌉
where, C2 > 0 is a constant. Summing over each task m, the simplified
sample complexity for the third stage is given by

N3 ⩽ O

(
Mk

∆2 log
(
k log2

(
∆−1) |Wm|

δ

))
= Õ

(
M(k1 + k2)r

∆2

)

where∆ = minw∈W(w∗−w)⊤θ∗
(a1)
= minx∈X\{x∗},z∈Z\{z∗}(x⊤

∗ Θ∗z∗−x⊤Θ∗z).
The (a1) follows by reshaping the arms in W to recover the arms in X and



474

Z.
2nd Stage: Again recall that the E-optimal design in stage 2 of Algo-

rithm 6 satisfies the Assumption 12 as the sample distribution D has finite
second order moments.

For the second stage first observe that by plugging in the definition of
τ̃ℓE we get

∥∥θ∗
m,k+1:p

∥∥2
2 =

∑
i>r∧j>r

H2
ij =

∥∥∥∥(Û⊥

ℓ )
⊤
(
U

∗S∗V∗⊤
)

V̂⊥
ℓ

∥∥∥∥2

F

⩽

∥∥∥∥(Û⊥

ℓ )
⊤U

∗
∥∥∥∥2

F

∥S∗∥2
2

∥∥∥(V̂⊥
ℓ )

⊤V∗
∥∥∥2

F
⩽ O

(
k1k2r

τEℓ
log
(
k1 + k2

δ

))
= O

(√
d1d2r

Sr
log
(
d1 + d2

δℓ

))
,

which implies
∥∥θ∗
k+1:p

∥∥
2 = Õ

(√
k1k2r/Sr

)
. We also set 8k1k2r

τEm,ℓS
2
r

log
(
k1+k2
δℓ

)
:=

S⊥m,ℓ. Now we bound the sample complexity from the second stage. From
the second stage we can show that we have for the arm set W̃m

N2 =

⌈log2(4∆−1)⌉∑
ℓ=1

∑
w̃∈W̃m

⌈
τ̃Em,ℓb̂

E
m,ℓ,w̃

⌉

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
(p+ 1)p

2 + τ̃Em,ℓ

)

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
(p+ 1)p

2 +

√
8k1k2r log (4ℓ2|W|/δ)

Sr

)

⩽ (p+ 1)p
⌈
log2

(
4∆−1)⌉+ 32

√
k1k2r

Sr
log
(

4 log2
2
(
8∆−1) |W|

δ

)⌈
log2

(
4∆−1)⌉

= O

(√
k1k2r

Sr
log
(

4 log2
2
(
8∆−1) |W|

δ

))
(a)
= Õ

(√
k1k2r

Sr

)
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1st Stage: Finally we also use the E-optimal design in first stage of
Algorithm 6. Note that this design satisfies the Assumption 12 as the
sample distribution D has finite second-order moments. Now we bound
the sample complexity from the first stage. From the first stage we can
show that we have for the arm set W

N1 =

⌈log2(4∆−1)⌉∑
ℓ=1

M∑
m=1

∑
w∈Wm

⌈
τEℓ b̂

E
m,ℓ,w

⌉

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
M(p+ 1)p

2 + τEℓ

)

=

⌈log2(4∆−1)⌉∑
ℓ=1

(
M(p+ 1)p

2 +

√
8d1d2r log (4ℓ2|W|/δ)

Sr

)

⩽M(p+ 1)p
⌈
log2

(
4∆−1)⌉+ 32

√
d1d2r

Sr
log
(

4 log2
2
(
8∆−1) |W|

δ

)⌈
log2

(
4∆−1)⌉

(a)
= O

(√
d1d2r

Sr
log
(

4 log2
2
(
8∆−1) |W|

δ

))
(a)
= Õ

(√
d1d2r

Sr

)

where, (a) follows as p = d1d2. Combining N1,N2 and N3 gives the claim
of the theorem.

D.6 Additional Experimental Details
Single Task Unit Ball: This experiment consists of a set of {6, 10, 14} left
and right arms that are arranged in a unit ball in R6, and ∥x∥ = 1, ∥z∥ = 1
for all x ∈ X and z ∈ Z. Hence, we have d1 ∈ R6 and d2 ∈ R6. We
choose a random Θ∗ ∈ Rd1×d2 which has rank r = 2. We set δ = 0.1.
We compare against RAGE (Fiez et al., 2019) that treats this d1d2 bilinear
bandit as a linear bandit setting and suffers a sample complexity that
scales as Õ(d1d2/∆

2). We do a continuous relaxation of the algorithm
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when implementing it to make this more tractable.
Multi-task Unit Ball: This experiment consists of a set of {5, 10, 15, 20, 25,

30} tasks. For each task, we choose left and right arms that are arranged in
a unit ball in R8, and ∥x∥ = 1, ∥z∥ = 1 for all x ∈ X and z ∈ Z. Hence, we
have d1 ∈ R8 and d2 ∈ R8. We choose k1 = k2 = 4, and feature extractors
B1 ∈ Rd1×k1 , B2 ∈ Rd2×k2 shared across tasks. We choose a random matrix
Sm,∗ ∈ Rk1×k2 for each taskm such that Sm,∗ has rank r = 2. We set δ = 0.1.
We compare against DouExpDes (Du et al., 2023) that treats this setting as
Mk1k2 bilinear bandits (after learning the feature extractors) and suffers a
sample complexity that scales as Õ(Mk1k2/∆

2) (see Theorem D.15). Again
we do a continuous relaxation of the algorithm when implementing it to
make this more tractable.
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D.7 Table of Notations

Notations Definition
X Left arm set
Z Right arm set
M Number of tasks
ℓ Phase number
Θm,∗ Hidden parameter matrix for
bEℓ E-optimal design at the ℓ-th phase
bGm,ℓ G-optimal design at the ℓ-th phase for them-th

task
S⊥m,ℓ

8d1d2r
τEℓ S

2
r

log
(
d1+d2
δℓ

)
λ⊥m,ℓ τGm,ℓ−1/8(d1 + d2)r log(1 +

τGm,ℓ−1
λ

)

Bℓm,∗ (8
√
λS+

√
λ⊥m,ℓS

⊥
m,ℓ)

B1 Left feature extractor
B2 Right feature extractor
Sr r-th largest singular value of Θ∗
∆(x, z) x⊤

∗ Θ∗z∗ − x⊤Θ∗z
∆ minx ̸=x∗,z̸=z∗ ∆(x, z)
Y(W) {w − w′ : ∀w, w′ ∈W, w ̸= w′}

Y∗(W) {w∗ − w : ∀w ∈W\w∗}

δ confidence level

Table D.1: Table of Notations for GOBLIN
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e appendix: pretraining decision transformers
with reward prediction for in-context structured
bandit learning

E.1 Experimental Setting Information and
Details of Baselines

In this section, we describe in detail the experimental settings and some
baselines.

Experimental Details

Linear Bandit: We consider the setting when f(x,θ∗) = x⊤θ∗. Here
x ∈ Rd is the action feature and θ∗ ∈ Rd is the hidden parameter. For
every experiment, we first generate tasks from Tpre. Then we sample a
fixed set of actions from N (0, Id/d) in Rd and this constitutes the features.
Then for each taskm ∈ [M] we sample θm,∗ ∼ N (0, Id/d) to produce the
means µ(m,a) = ⟨θm,∗, x(m,a)⟩ for a ∈ A andm ∈ [M]. Finally, note that
we do not shuffle the data as the order matters. Also in this setting x(m,a)
for each a ∈ A is fixed for all tasksm.

Non-Linear Bandit: We now consider the setting when f(x,θ∗) =

1/(1 + 0.5 · exp(2 · exp(−x⊤θ∗))). Again, here x ∈ Rd is the action feature,
and θ∗ ∈ Rd is the hidden parameter. Note that this is different than
the generalized linear bandit setting (Filippi et al., 2010a; Li et al., 2017b).
Again for every experiment, we first generate tasks from Tpre. Then we
sample a fixed set of actions from N (0, Id/d) in Rd and this constitutes
the features. Then for each taskm ∈ [M] we sample θm,∗ ∼ N (0, Id/d) to
produce the means µ(m,a) = 1/(1 + 0.5 · exp(2 · exp(−x(m,a)⊤θm,∗)))

for a ∈ A and m ∈ [M]. Again note that in this setting x(m,a) for each
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a ∈ A is fixed for all tasksm.
We use NVIDIA GeForce RTX 3090 GPU with 24GB RAM to load the

GPT 2 Large Language Model. This requires less than 2GB RAM without
data, and with large context may require as much as 20GB RAM.

Details of Baselines

(1) Thomp: This baseline is the stochastic A-action bandit Thompson
Sampling algorithm from Thompson (1933); Agrawal and Goyal (2012);
Russo et al. (2018); Zhu and Tan (2020). We briefly describe the algorithm
below: At every round t and each action a, Thomp samples γm,t(a) ∼

N(µ̂m,t−1(a),σ2/Nm,t−1(a)), where Nm,t−1(a) is the number of times the
action a has been selected till t− 1, and µ̂m,t−1(a) =

∑t−1
s=1 r̂m,s1(Is=a)
Nm,t−1(a)

is the
empirical mean. Then the action selected at round t is It = argmaxa γm,t(a).
Observe that Thomp is not a deterministic algorithm like UCB (Auer et al.,
2002). So we choose Thomp as the weak demonstrator πw because it is
more exploratory than UCB and also chooses the optimal action, am,∗, a
sufficiently large number of times. Thomp is a weak demonstrator as it
does not have access to the feature set X for any taskm.

(2) LinUCB: (Linear Upper Confidence Bound): This baseline is the
Upper Confidence Bound algorithm for the linear bandit setting that selects
the action It at round t for task m that is most optimistic and reduces the
uncertainty of the task unknown parameter θm,∗. To balance exploitation
and exploration between choosing different items the LinUCB computes
an upper confidence value to the estimated mean of each action xm,a ∈ X.
This is done as follows: At every round t for taskm, it calculates the ucb
value Bm,a,t for each action xm,a ∈ X such that Bm,a,t = x⊤

m,aθ̂m,t−1 +

α∥xm,a∥Σ−1
m,t−1

where α > 0 is a constant and θ̂m,t is the estimate of the
model parameter θm,∗ at round t. Here, Σm,t−1 =

∑t−1
s=1 xm,sx⊤

m,s + λId
is the data covariance matrix or the arms already tried. Then it chooses
It = argmaxa Bm,a,t. Note that LinUCB is a strong demonstrator that



480

we give oracle access to the features of each action; other algorithms do
not observe the features. Hence, in linear bandits, LinUCB provides an
approximate upper bound on the performance of all algorithms.

(3) MLinGreedy: This is the multi-task linear regression bandit al-
gorithm proposed by Yang et al. (2021a). This algorithm assumes that
there is a common low dimensional feature extractor B ∈ Rk×d, k ⩽ d

shared between the tasks and the rewards per taskm are linearly depen-
dent on a hidden parameter θm,∗. Under a diversity assumption (which
may not be satisfied in real data) and W = [w1, . . . , wM] they assume
Θ = [θ1,∗, . . . ,θM,∗] = BW. During evaluation MLinGreedy estimates
the B̂ and Ŵ from training data and fit θ̂m = B̂ŵm per task and selects
action greedily based on Im,t = argmaxa x⊤

m,aθ̂m,∗. Finally, note that
MLinGreedy requires access to the action features to estimate θ̂m and
select actions as opposed to DPT, AD, and PreDeToR.

E.2 Empirical Study: Bilinear Bandits
In this section, we discuss the performance of PreDeToR against the other
baselines in the bilinear setting. Again note that the number of tasks
Mpre ≫ A ⩾ n. Through this experiment, we want to evaluate the perfor-
mance of PreDeToR to exploit the underlying latent structure and reward
correlation when the horizon is small, the number of tasks is large, and
understand its performance in the bilinear bandit setting (Jun et al., 2019;
Lu et al., 2021; Kang et al., 2022; Mukherjee et al., 2023b). Note that this
setting also goes beyond the linear feedback model (Abbasi-Yadkori et al.,
2011; Lattimore and Szepesvári, 2020a) and is related to matrix bandits
(Yang and Wang, 2020).

Bilinear bandit setting: In the bilinear bandits the learner is provided
with two sets of action sets, X ⊆ Rd1 and Z ⊆ Rd2 which are referred to as
the left and right action sets. At every round t the learner chooses a pair
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of actions xt ∈ X and zt ∈ Z and observes a reward

rt = x⊤
t Θ∗zt + ηt

where Θ∗ ∈ Rd1×d2 is the unknown hidden matrix which is also low-rank.
The ηt is a σ2 sub-Gaussian noise. In the multi-task bilinear bandit setting
we now have a set ofM tasks where the reward for them-th task at round
t is given by

rm,t = x⊤
m,tΘm,∗zm,t + ηm,t.

Here Θm,∗ ∈ Rd1×d2 is the unknown hidden matrix for each taskm, which
is also low-rank. The ηm,t is a σ2 sub-Gaussian noise. Let κ be the rank of
each of these matrices Θm,∗.

A special case is the rank 1 structure where Θm,∗ = θm,∗θ
⊤
m,∗ where

Θm,∗ ∈ Rd×d and θm,∗ ∈ Rd for each task m. Let the left and right action
sets be also same such that xm,t ∈ X ⊆ Rd. Observe then that the reward
for them-th task at round t is given by

rm,t = x⊤
m,tΘm,∗xm,t + ηm,t = (x⊤

m,tθm,∗)
2 + ηm,t.

This special case is studied in Chaudhuri et al. (2017).
Baselines: We again implement the same baselines discussed in Sec-

tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, and
Thomp. Note that we do not implement the LinUCB and MLinGreedy for
the bilinear bandit setting. However, we now implement the LowOFUL
(Jun et al., 2019) which is optimal in the bilinear bandit setting.

LowOFUL: The LowOFUL algorithm first estimates the unknown
parameter Θm,∗ for each task m using E-optimal design (Pukelsheim,
2006; Fedorov, 2013; Jun et al., 2019) for n1 rounds. Let Θ̂m,n1 be the
estimate of Θm,∗ at the end of n1 rounds. Let the SVD of Θ̂m,n1 be given
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by SVD(Θ̂m,n1) = Ûm,n1Ŝm,n1V̂m,n1 . Then LowOFUL rotates the actions
as follows:

X′
m =

{[
Ûm,n1Û⊥

m,n1

]⊤
xm : xm ∈ X

}
and

Z′ =

{[
V̂m,n1V̂⊥

m,n1

]⊤
zm : zm ∈ Z

}
.

Then defines a vectorized action set for each taskm so that the last (d1 − κ)·
(d2 − κ) components are from the complementary subspaces:

Ãm =
{[

vec
(
xm,1:κz⊤

m,1:κ
)

; vec
(
xm,κ+1:d1z⊤

m,1:κ
)

; vec
(
xm,1:κz⊤

m,κ+1:d2

)
;

vec
(
xm,κ+1:d1z⊤

m,κ+1:d2

)]
∈ Rd1d2 : xm ∈ X′

m, zm ∈ Z′
m

}
.

Finally for n2 = n− n1 rounds, LowOFUL invokes the specialized OFUL
algorithm (Abbasi-Yadkori et al., 2011) for the rotated action set Ãm with
the low dimension k = (d1 + d2) κ − κ2. Note that the LowOFUL runs
the per-task low dimensional OFUL algorithm rather than learning the
underlying structure across the tasks (Mukherjee et al., 2023b).

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:

Finding 5: PreDeToR (-τ) outperforms DPT-greedy, AD, and
matches the performance of LowOFUL in bilinear bandit setting.

Experimental Result: We observe these outcomes in Figure E.1. In
Figure E.1a we experiment with rank 1 hidden parameter Θm,∗ and set
horizon n = 20, Mpre = 200000, Mtest = 200, A = 30, and d = 5. In
Figure E.1b we experiment with rank 2 hidden parameter Θm,∗ and set
horizon n = 20, Mpre = 250000, Mtest = 200, A = 25, and d = 5. Again,
the demonstrator πw is the Thomp algorithm. We observe that PreDeToR
has lower cumulative regret than DPT-greedy, AD and Thomp. Note



483

(a) Rank 1 Θm,∗ (b) Rank 2 Θm,∗

Figure E.1: Experiment with bilinear bandits. The y-axis shows the cumu-
lative regret.

that for any taskm for the horizon 20 the Thomp will be able to sample
all the actions at most once. Note that for this small horizon setting the
DPT-greedy does not have a good estimation of âm,∗ which results in
a poor prediction of optimal action âm,t,∗. In contrast PreDeToR learns
the correlation of rewards across tasks and can perform well. Observe
from Figure E.1a, and E.1b that PreDeToR has lower regret than Thomp
and matches LowOFUL. Also, in this low-data regime it is not enough
for LowOFUL to learn the underlying Θm,∗ with high precision. Hence,
PreDeToR also has slightly lower regret than LowOFUL. Note that the
main objective of AD is to match the performance of its demonstrator.
Most importantly it shows that PreDeToR can exploit the underlying latent
structure and reward correlation better than DPT-greedy, and AD.

E.3 Empirical Study: Latent Bandits
In this section, we discuss the performance of PreDeToR (-τ) against the
other baselines in the latent bandit setting and create a generalized bilinear
bandit setting. Note that the number of tasksMpre ≫ A ⩾ n. Using this
experiment, we want to evaluate the ability of PreDeToR (-τ) to exploit the
underlying reward correlation when the horizon is small, the number of
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tasks is large, and understand its performance in the latent bandit setting
(Hong et al., 2020; Maillard and Mannor, 2014; Pal et al., 2023; Kveton
et al., 2017). We create a latent bandit setting which generalizes the bilinear
bandit setting (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022; Mukherjee
et al., 2023b). Again note that this setting also goes beyond the linear
feedback model (Abbasi-Yadkori et al., 2011; Lattimore and Szepesvári,
2020a) and is related to matrix bandits (Yang and Wang, 2020).

Latent bandit setting: In this special multi-task latent bandits the
learner is again provided with two sets of action sets, X ⊆ Rd1 and Z ⊆ Rd2

which are referred to as the left and right action sets. The reward for the
m-th task at round t is given by

rm,t = x⊤
m,t (Θm,∗ +UV⊤)︸ ︷︷ ︸

Zm∗

zm,t + ηm,t.

Here Θm,∗ ∈ Rd1×d2 is the unknown hidden matrix for each taskm, which
is also low-rank. Additionally, all the tasks share a common latent parameter
matrix UV⊤ ∈ Rd1×d2 which is also low rank. Hence the learner needs to
learn the latent parameter across the tasks hence the name latent bandits.
Finally, the ηm,t is a σ2 sub-Gaussian noise. Let κ be the rank of each of
these matrices Θm,∗ and UV⊤. Again special case is the rank 1 structure
where the reward for them-th task at round t is given by

rm,t = x⊤
m,t (θm,∗θ

⊤
m,∗ + ux⊤)︸ ︷︷ ︸
Zm,∗

xm,t + ηm,t.

where θm,∗ ∈ Rd for each task m and u, x ∈ Rd. Note that the left and
right action sets are the same such that xm,t ∈ X ⊆ Rd.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, AD,
Thomp, and LowOFUL. However, we now implement a special LowOFUL
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(stated in Section E.2) which has knowledge of the shared latent parame-
ters U, and V. We call this the LowOFUL (oracle) algorithm. Therefore
LowOFUL (oracle) has knowledge of the problem parameters in the latent
bandit setting and hence the name. Again note that we do not implement
the LinUCB and MLinGreedy for the latent bandit setting.

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:

Finding 6: PreDeToR (-τ) outperforms DPT-greedy, AD, and
matches the performance of LowOFUL (oracle) in latent bandit
setting.

(a) Rank 1 Zm,∗ (b) Rank 2 Zm,∗ (c) Rank 3 Zm,∗

Figure E.2: Experiment with latent bandits. The y-axis shows the cumula-
tive regret.

Experimental Result: We observe these outcomes in Figure E.2. In
Figure E.2a we experiment with rank 1 hidden parameter θm,∗θ

⊤
m,∗ and

latent parameters ux⊤ shared across the tasks and set horizon n = 20,
Mpre = 200000, Mtest = 200, A = 30, and d = 5. In Figure E.2b we
experiment with rank 2 hidden parameter Θm,∗, and latent parameters
UV⊤ and set horizon n = 20, Mpre = 250000, Mtest = 200, A = 25, and
d = 5. In Figure E.2c we experiment with rank 3 hidden parameter Θm,∗,
and latent parameters UV⊤ and set horizon n = 20, Mpre = 300000,
Mtest = 200, A = 25, and d = 5. Again, the demonstrator πw is the
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Thomp algorithm. We observe that PreDeToR (-τ) has lower cumulative
regret than DPT-greedy, AD and Thomp. Note that for any taskm for the
horizon 20 the Thomp will be able to sample all the actions at most once.
Note that for this small horizon setting the DPT-greedy does not have
a good estimation of âm,∗ which results in a poor prediction of optimal
action âm,t,∗. In contrast PreDeToR (-τ) learns the correlation of rewards
across tasks and is able to perform well. Observe from Figure E.2a, E.2b,
and E.2c that PreDeToR has lower regret than Thomp and has regret
closer to LowOFUL (oracle)which has access to the problem-dependent
parameters. Hence. LowOFUL (oracle) outperforms PreDeToR (-τ) in
this setting. This shows that PreDeToR is able to exploit the underlying
latent structure and reward correlation better than DPT-greedy, and AD.

E.4 Connection between PreDeToR and Linear
Multivariate Gaussian Model

In this section, we try to understand the behavior of PreDeToR and its
ability to exploit the reward correlation across tasks under a linear mul-
tivariate Gaussian model. In this model, the hidden task parameter, θ∗,
is a random variable drawn from a multi-variate Gaussian distribution
(Bishop, 2006a) and the feedback follows a linear model. We study this
setting since we can estimate the Linear Minimum Mean Square Estimator
(LMMSE) in this setting (Carlin and Louis, 2008; Box and Tiao, 2011).
This yields a posterior prediction for the mean of each action over all tasks
on average, by leveraging the linear structure when θ∗ is drawn from a
multi-variate Gaussian distribution. So we can compare the performance
of PreDeToR against such an LMMSE and evaluate whether it is exploiting
the underlying linear structure and the reward correlation across tasks.
We summarize this as follows:
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Finding 7: PreDeToR learns the reward correlation covariance ma-
trix from the in-context training data Htrain and acts greedily on
it.

Figure E.3: BayesPred Perfor-
mance

Consider the linear feedback setting
consisting ofA actions and the hidden task
parameter θ∗ ∼ N(0,σ2

θId). The reward of
the action xt at round t is given by rt =

x⊤
t θ∗ + ηt, where ηt is σ2 sub-Gaussian.

Let πw collect n rounds of pretraining in-
context data and observe {It, rt}nt=1. Let
Nn(a) denote the total number of times
the action a is sampled for n rounds. Note
that we drop the task indexm in these no-

tations as the random variable θ∗ corresponds to the task. Define the
matrix Hn ∈ Rn×A where the t-th row represents the action It for t ∈ [n].
The t-th row of Hn is a one-hot vector with the It-th component being 1.
We represent each action by one hot vector because we assume that this
LMMSE does not have access to the feature vectors of the actions similar to
the PreDeToR for fair comparison. Then define the reward vector Yn ∈ Rn

where the t-th component is the reward rt observed for the action It for
t ∈ [n] in the pretraining data. Define the diagonal matrix DA ∈ RA×A

estimated from pretraining data as follows

DA(i, i) =

 σ2

Nn(a)
, if Nn(a) > 0

= 0, if Nn(a) = 0
(E.1)

where the reward noise being σ2 sub-Gaussian is known. Finally de-
fine the estimated reward covariance matrix SA ∈ RA×A as SA(a,a ′) =

µ̂n(a)µ̂n(a
′), where µ̂n(a) is the empirical mean of action a estimated
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from the pretraining data. This matrix captures the reward correlation
between the pairs of actions a,a ′ ∈ [A]. Then the posterior average mean
estimator µ̂ ∈ RA over all tasks is given by the following lemma. The proof
is given in Section E.15.

Lemma 1. Let Hn be the action matrix, Yn be the reward vector and SA be the
estimated reward covariance matrix. Then the posterior prediction of the average
mean reward vector µ̂ over all tasks is given by

µ̂ = σ2
θSAH⊤

n

(
σ2
θHn(SA + DA)H⊤

n

)−1 Yn. (E.2)

The µ̂ in (E.2) represents the posterior mean vector averaged on all
tasks. So if some action a ∈ [A] consistently yields high rewards in the
pretraining data then µ̂(a) has high value. Since the test distribution is
the same as pretraining, this action on average will yield a high reward
during test time.

We hypothesize that the PreDeToR is learning the reward correlation
covariance matrix from the training data Htrain and acting greedily on it. To
test this hypothesis, we consider the greedy BayesPred algorithm that first
estimates SA from the pretraining data. It then uses the LMMSE estimator
in Lemma 1 to calculate the posterior mean vector µ̂, and then selects
It = argmaxa µ̂(a) at each round t. Note that BayesPred is a greedy
algorithm that always selects the most rewarding action (exploitation)
without any exploration of sub-optimal actions. Also the BayesPred is an
LMMSE estimator that leverages the linear reward structure and estimates
the reward covariance matrix, and therefore can be interpreted as a lower
bound to the regret of PreDeToR. The hypothesis that BayesPred is a lower
bound to PreDeToR is supported by Figure E.3. In Figure E.3 the reward
covariance matrix for BayesPred is estimated from the Htrain by first run-
ning the Thomp (πw). Observe that the BayesPred has a lower cumulative
regret than PreDeToR and almost matches the regret of PreDeToR towards
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the end of the horizon. Also note that LinUCB has lower cumulative regret
towards the end of horizon as it leverages the linear structure and the
feature of the actions in selecting the next action.

E.5 Empirical Study: Increasing number of
Actions

In this section, we discuss the performance of PreDeToR when the number
of actions is very high so that the weak demonstrator πw does not have
sufficient samples for each action. However, the number of tasksMpre ≫
A > n.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, AD,
Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes from our experimental
results of introducing more actions than the horizon (or more dimensions
than actions) during data collection and evaluation:

Finding 8: PreDeToR (-τ) outperforms DPT-greedy, and AD, even
when A > n butMpre ≫ A.

Experimental Result: We observe these outcomes in Figure E.4. In
Figure E.4a we show the linear bandit setting forMpre = 250000,Mtest =

200,A = 100, n = 50 and d = 5. Again, the demonstrator πw is the Thomp
algorithm. We observe that PreDeToR (-τ) has lower cumulative regret
than DPT-greedy and AD. Note that for any taskm the Thomp will not be
able to sample all the actions even once. The weak performance of DPT-
greedy can be attributed to both short horizons and the inability to estimate
the optimal action for such a short horizon n < A. The AD performs
similar to the demonstrator Thomp because of its training. Observe that
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(a) Linear Bandit (b) Non-linear Bandit

Figure E.4: Testing the limit experiments. The horizontal axis is the number
of rounds. Confidence bars show one standard error.

PreDeToR (-τ) has similar regret to LinUCB and lower regret than Thomp
which also shows that PreDeToR is exploiting the latent linear structure
of the underlying tasks. In Figure E.4b we show the non-linear bandit
setting for horizon n = 40, Mpre = 200000, A = 60, d = 2, and |Ainv| = 5.
The demonstrator πw is the Thomp algorithm. Again we observe that
PreDeToR (-τ) has lower cumulative regret than DPT-greedy, AD and
LinUCB which fails to perform well in this non-linear setting due to its
algorithmic design.

E.6 Empirical Study: Increasing Horizon
In this section, we discuss the performance of PreDeToR with respect to an
increasing horizon for each task m ∈ [M]. However, note that the number
of tasksMpre ⩾ n. Note that Lee et al. (2023) studied linear bandit setting
for n = 200. We study the setting up to a similar horizon scale.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, AD,
Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:
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Finding 9: PreDeToR (-τ) outperforms DPT-greedy, and AD with
increasing horizon.

(a) Horizon 20 (b) Horizon 40 (c) Horizon 60

(d) Horizon 100 (e) Horizon 120 (f) Horizon 140

(g) Horizon 200 (h) Increasing Horizon

Figure E.5: Experiment with increasing horizon. The y-axis shows the
cumulative regret.

Experimental Result: We observe these outcomes in Figure E.5. In
Figure E.5 we show the linear bandit setting for Mpre = 150000, Mtest =

200, A = 20, n = {20, 40, 60, 100, 120, 140, 200} and d = 5. Again, the
demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ)
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has lower cumulative regret than DPT-greedy, and AD. Note that for any
task m for the horizon 20 the Thomp will be able to sample all the actions
at most once. Observe from Figure E.5a, E.5b, E.5c, Figure E.5d, E.5e, E.5f
and E.5g that PreDeToR (-τ) is closer to LinUCB and outperforms Thomp
which also shows that PreDeToR (-τ) is learning the latent linear structure
of the underlying tasks. In Figure E.5h we plot the regret of all the baselines
with respect to the increasing horizon. Again we see that PreDeToR (-τ)
is closer to LinUCB and outperforms DPT-greedy, AD and Thomp. This
shows that PreDeToR (-τ) is able to exploit the latent structure and reward
correlation across the tasks for varying horizon length.

E.7 Empirical Study: Increasing Dimension
In this section, we discuss the performance of PreDeToR with respect to an
increasing dimension for each task m ∈ [M]. Again note that the number
of tasksMpre ≫ A ⩾ n. Through this experiment, we want to evaluate the
performance of PreDeToR and see how it exploits the underlying reward
correlation when the horizon is small as well as for increasing dimensions.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τDPT-greedy, AD, Thomp,
and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:

Finding 10: PreDeToR (-τ) outperforms DPT-greedy, AD with in-
creasing dimension and has lower regret than LinUCB for larger
dimension.

Experimental Result: We observe these outcomes in Figure E.5. In
Figure E.5 we show the linear bandit setting for horizon n = 20, Mpre =

160000, Mtest = 200, A = 20, and d = {10, 20, 30, 40}. Again, the demon-
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(a) Dimension 10 (b) Dimension 20 (c) Dimension 30

(d) Dimension 40 (e) Increasing Dimension

Figure E.6: Experiment with increasing dimension. The y-axis shows the
cumulative regret.

strator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has
lower cumulative regret than DPT-greedy, AD. Note that for any taskm
for the horizon 20 the Thomp will be able to sample all the actions at most
once. Observe from Figure E.6a, E.6b, E.6c, and E.6d that PreDeToR (-τ) is
closer to LinUCB and has lower regret than Thomp which also shows that
PreDeToR (-τ) is exploiting the latent linear structure of the underlying
tasks. In Figure E.6e we plot the regret of all the baselines with respect
to the increasing dimension. Again we see that PreDeToR (-τ) has lower
regret than DPT-greedy, AD and Thomp. Observe that with increasing
dimension PreDeToR is able to outperform LinUCB. This shows that the
PreDeToR (-τ) is able to exploit reward correlation across tasks for varying
dimensions.



494

E.8 Empirical Study: Increasing Attention
Heads

In this section, we discuss the performance of PreDeToR with respect to
an increasing attention heads for the transformer model for the non-linear
feedback model. Again note that the number of tasks Mpre ≫ A ⩾ n.
Through this experiment, we want to evaluate the performance of Pre-
DeToR to exploit the underlying reward correlation when the horizon is
small and understand the representative power of the transformer by in-
creasing the attention heads. Note that we choose the non-linear feedback
model and low data regime to leverage the representative power of the
transformer.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, AD,
Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:

Finding 11: PreDeToR (-τ) outperforms DPT-greedy, and AD with
increasing attention heads.

Experimental Result: We observe these outcomes in Figure E.7. In
Figure E.7 we show the non-linear bandit setting for horizon n = 20,
Mpre = 160000,Mtest = 200, A = 20, heads = {2, 4, 6, 8} and d = 5. Again,
the demonstrator πw is the Thomp algorithm. We observe that PreDeToR
(-τ) has lower cumulative regret than DPT-greedy, AD. Note that for any
task m for the horizon 20 the Thomp will be able to sample all the actions
atmost once. Observe from Figure E.7a, E.7b, E.7c, and E.7d that PreDeToR
(-τ) has lower regret than AD, Thomp and LinUCB which also shows that
PreDeToR (-τ) is exploiting the latent linear structure of the underlying
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(a) Attention Heads 2 (b) Attention Heads 4 (c) Attention Heads 6

(d) Attention Heads 8 (e) Attention Heads 12 (f) Increasing Attention
Heads

Figure E.7: Experiment with increasing attention heads. The y-axis shows
the cumulative regret.

tasks for the non-linear setting. In Figure E.7f we plot the regret of all the
baselines with respect to the increasing attention heads. Again we see that
PreDeToR (-τ) regret decreases as we increase the attention heads.

E.9 Empirical Study: Increasing Number of
Tasks

In this section, we discuss the performance of PreDeToR with respect to the
increasing number of tasks for the linear bandit setting. Again note that
the number of tasks Mpre ≫ A ⩾ n. Through this experiment, we want to
evaluate the performance of PreDeToR to exploit the underlying reward
correlation when the horizon is small and the number of tasks is changing.
Finally, recall that when the horizon is small the weak demonstrator πw
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does not have sufficient samples for each action. This leads to a poor
approximation of the greedy action.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, AD,
Thomp, and LinUCB.

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:

Finding 12: PreDeToR (-τ) fails to exploit the underlying latent
structure and reward correlation from in-context data when the
number of tasks is small.

(a) TasksMtrain = 5000 (b) TasksMtrain = 10000 (c) TasksMtrain = 50000

(d) TasksMtrain = 100000 (e) TasksMtrain = 150000 (f) Increasing tasks

Figure E.8: Experiment with an increasing number of tasks. The y-axis
shows the cumulative regret.

Experimental Result: We observe these outcomes in Figure E.8. In
Figure E.8 we show the linear bandit setting for horizon n = 20, Mpre ∈
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{5000, 10000, 50000, 100000, 150000}, Mtest = 200, A = 20, and d = 40.
Again, the demonstrator πw is the Thomp algorithm. We observe that
PreDeToR (-τ), AD and DPT-greedy suffer more regret than the LinUCB
when the number of tasks is small (Mtrain ∈ {5000, 10000} in Figure E.8a,
and E.8b. However in Figure E.8c, E.8d, E.8e, and E.8f we show that Pre-
DeToR has lower regret than Thomp and matches LinUCB. This shows that
PreDeToR (-τ) is exploiting the latent linear structure of the underlying
tasks for the non-linear setting. Moreover, observe that asMtrain increases
the PreDeToR has lower cumulative regret than DPT-greedy, AD. Note
that for any taskm for the horizon 20 the Thomp will be able to sample all
the actions at most once. Therefore DPT-greedy does not perform as well
as PreDeToR. Finally, note that the result shows that PreDeToR (-τ) is able
to exploit the reward correlation across the tasks better as the number of
tasks increases.

E.10 Exploration of PreDeToR(-τ)
In this section, we discuss the exploration of PreDeToR in the linear ban-
dit setting discussed in Section 6.3. Recall that the linear bandit setting
consist of horizon n = 25, Mpre = 200000, Mtest = 200, A = 10, and
d = 2. The demonstrator πw is the Thomp algorithm and we observe that
PreDeToR (-τ) has lower cumulative regret than DPT-greedy, AD and
matches the performance of LinUCB. Therefore PreDeToR (-τ) behaves
almost optimally in this setting and so we analyze how PreDeToR conducts
exploration for this setting.

Outcomes: We first discuss the main outcomes of our analysis of
exploration in the low-data regime:
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Finding 13: The PreDeToR (-τ) has a two phase exploration. In the
first phase, it explores with a strong prior over the in-context training
data. In the second phase, once the task data has been observed for
a few rounds (in-context) it switches to task-based exploration.

We first show in Figure E.9a the training distribution of the optimal
actions. For each bar, the frequency indicates the number of tasks where
the action (shown in the x-axis) is the optimal action.

Then in Figure E.9b we show how the sampling distribution of DPT-
greedy, PreDeToR and PreDeToR-τ change in the first 10 and last 10 rounds
for all the tasks where action 5 is optimal. To plot this graph we first sum
over the individual pulls of the action taken by each algorithm over the
first 10 and last 10 rounds. Then we average these counts over all test
tasks where action 5 is optimal. From the figure Figure E.9b we see that
PreDeToR(-τ) consistently pulls the action 5 more than DPT-greedy. It also
explores other optimal actions like {2, 3, 6, 7, 10} but discards them quickly
in favor of the optimal action 5 in these tasks. This shows that PreDeToR
(-τ) only considers the optimal actions seen from the training data. Once
sufficient observation have been observed for the task it switches to task-
based exploration and samples the optimal action more than DPT-greedy.

Finally, we plot the feasible action set considered by DPT-greedy, Pre-
DeToR, and PreDeToR-τ in Figure E.9c. To plot this graph again we con-
sider the test tasks where the optimal action is 5. Then we count the
number of distinct actions that are taken from round t up until horizon n.
Finally we average this over all the considered tasks where the optimal
action is 5. We call this the candidate action set considered by the algo-
rithm. From the Figure E.9c we see that DPT-greedy explores the least and
gets stuck with few actions quickly (by round 10). Note that the actions
DPT-greedy samples are sub-optimal and so it suffers a high cumulative
regret (see Figure 6.2). PreDeToR explore slightly more than DPT-greedy,
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but PreDeToR-τ explores the most.

(a) Train Optimal Action
Distribution

(b) Distribution of action sam-
pling in all tasks where action
5 is optimal

(c) Candidate Action Set
in Time averaged over all
tasks where action 5 is op-
timal

Figure E.9: Exploration Analysis of PreDeToR(-τ)

E.11 Exploration of PreDeToR(-τ) in New Arms
Setting

In this section, we discuss the exploration of PreDeToR (-τ) in the linear
and non-linear new arms bandit setting discussed in Section 6.5. Recall
that we consider the linear bandit setting of horizonn = 50,Mpre = 200000,
Mtest = 200, A = 20, and d = 5. Here during data collection and during
collecting the test data, we randomly select one new action from Rd for
each taskm. So the number of invariant actions is |Ainv| = 19.

Outcomes: We first discuss the main outcomes of our analysis of
exploration in the low-data regime:

Finding 14: The PreDeToR (-τ) is robust to changes when the num-
ber of in-variant actions is large. PreDeToR (-τ) performance drops
as shared structure breaks down.
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We first show in Figure E.10a the training distribution of the optimal
actions. For each bar, the frequency indicates the number of tasks where
the action (shown in the x-axis) is the optimal action.

Then in Figure E.10b we show how the sampling distribution of DPT-
greedy, PreDeToR and PreDeToR-τ change in the first 10 and last 10 rounds
for all the tasks where action 17 is optimal. We plot this graph the same
way as discussed in Section E.10. From the figure Figure E.10b we see that
PreDeToR(-τ) consistently pulls the action 17 more than DPT-greedy. It
also explores other optimal actions like {1, 2, 3, 8, 9, 15} but discards them
quickly in favor of the optimal action 17 in these tasks.

Finally, we plot the feasible action set considered by DPT-greedy, Pre-
DeToR, and PreDeToR-τ in Figure E.10c. To plot this graph again we
consider the test tasks where the optimal action is 17. Then we count the
number of distinct actions that are taken from round t up until horizon n.
Finally we average this over all the considered tasks where the optimal
action is 17. We call this the candidate action set considered by the algo-
rithm. From the Figure E.10c we see that PreDeToR-τ explores more than
PreDeToR in this setting.

We also show how the prediction error of the optimal action by Pre-
DeToR compared to LinUCB in this 1 new arm linear bandit setting. In Fig-
ure E.11a we first show how the 20 actions are distributed in theMtest = 200
test tasks. In Figure E.11a for each bar, the frequency indicates the num-
ber of tasks where the action (shown in the x-axis) is the optimal action.
Then in Figure E.11b we show the prediction error of PreDeToR (-τ) for
each taskm ∈ [Mtest]. The prediction error is calculated the same way as
stated in Section 6.5 From the Figure E.11b we see that for most actions
the prediction error of PreDeToR (-τ) is closer to LinUCB showing that
the introduction of 1 new action does not alter the prediction error much.
Note that LinUCB estimates the empirical mean directly from the test task,
whereas PreDeToR has a strong prior based on the training data. Therefore
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we see that PreDeToR is able to estimate the reward of the optimal action
quite well from the training dataset Dpre.

(a) Train Optimal Action Dis-
tribution

(b) Distribution of action sam-
pling in all tasks where action
17 is optimal

(c) Candidate Action Set
in Time averaged over all
tasks where action 17 is
optimal

Figure E.10: Exploration Analysis of PreDeToR(-τ) in linear 1 new arm
setting

(a) Test action distribution (b) Test Prediction Error

Figure E.11: Prediction error of PreDeToR(-τ) in linear 1 new arm setting

We now consider the setting where the number of invariant actions
is |Ainv| = 15. We again show in Figure E.12a the training distribution of
the optimal actions. For each bar, the frequency indicates the number of
tasks where the action (shown in the x-axis) is the optimal action. Then
in Figure E.12b we show how the sampling distribution of DPT-greedy,
PreDeToR and PreDeToR-τ change in the first 10 and last 10 rounds for
all the tasks where action 17 is optimal. We plot this graph the same way
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as discussed in Section E.10. From the figure Figure E.12b we see that
none of the algorithms PreDeToR, PreDeToR-τ, DPT-greedy consistently
pulls the action 17 more than other actions. This shows that the common
underlying actions across the tasks matter for learning the epxloration.

Finally, we plot the feasible action set considered by DPT-greedy, Pre-
DeToR, and PreDeToR-τ in Figure E.12c. To plot this graph again we
consider the test tasks where the optimal action is 17. We build the candi-
date set the same way as before. From the Figure E.12c we see that none
of the three algorithms DPT-greedy, PreDeToR, PreDeToR-τ, is able to
sample the optimal action 17 sufficiently high number of times.

We also show how the prediction error of the optimal action by Pre-
DeToR compared to LinUCB in this 1 new arm linear bandit setting. In Fig-
ure E.13a we first show how the 20 actions are distributed in theMtest = 200
test tasks. In Figure E.13a for each bar, the frequency indicates the number
of tasks where the action (shown in the x-axis) is the optimal action. Then
in Figure E.13b we show the prediction error of PreDeToR (-τ) for each
taskm ∈ [Mtest]. The prediction error is calculated the same way as stated
in Section 6.5. From the Figure E.13b we see that for most actions the
prediction error is higher than LinUCB showing that the introduction of 5
new actions (and thereby decreasing the invariant action set) significantly
alters the prediction error.

E.12 Data Collection Analysis
In this section, we analyze the performance of PreDeToR, PreDeToR-τ,
DPT-greedy, AD, Thomp, and LinUCBwhen the weak demonstrator πw is
Thomp, LinUCB, or Uniform. We again consider the linear bandit setting
discussed in Section 6.3. Recall that the linear bandit setting consist of
horizon n = 25, Mpre = 200000, Mtest = 200, A = 10, and d = 2. Finally,
we show the cumulative regret by the above baselines in Figure E.14a,
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(a) Train Optimal Action Dis-
tribution

(b) Distribution of action sam-
pling in all tasks where action
17 is optimal

(c) Candidate Action Set
in Time averaged all tasks
where action 17 is optimal

Figure E.12: Exploration Analysis of PreDeToR(-τ) in linear 5 new arm
setting

(a) Test action distribution (b) Test Prediction Error

Figure E.13: Prediction error of PreDeToR(-τ) in linear 1 new arm setting

E.14b, and E.14b when data is collected through Thomp, LinUCB, and
Uniform respectively.

Outcomes: We first discuss the main outcomes of our experimental
results for different data collection:

Finding 15: The PreDeToR (-τ) excels in exploiting the underlying
latent structure and reward correlation from in-context data when
the data diversity is high.

Experimental Result: We observe these outcomes in Figure E.14. In
Figure E.14a we see that the A-actioned Thomp is explorative enough as
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(a) Thomp data collection (b) LinUCB data collection (c) Uniform data collection

Figure E.14: Data Collection with various algorithms and Performance
analysis

it does not explore with the knowledge of feature representation. So it
pulls the sub-optimal actions sufficiently high number of times before
discarding them in favor of the optimal action. Therefore the training data
is diverse enough so that PreDeToR (-τ) can predict the reward vectors
for actions sufficiently well. Consequently, PreDeToR (-τ) almost matches
the LinUCB algorithm. Both DPT-greedy and AD perform poorly in this
setting.

In Figure E.14b we see that the LinUCB algorithm is not explorative
enough as it explores with the knowledge of feature representation and
quickly discards the sub-optimal actions in favor of the optimal action.
Therefore the training data is not diverse enough so that PreDeToR (-τ)
is not able to correctly predict the reward vectors for actions. Note that
DPT-greedy also performs poorly in this setting when it is not provided
with the optimal action information during training. The AD matches the
performance of its demonstrator LinUCB because of its training procedure
of predicting the next action of the demonstrator.

Finally, in Figure E.14c we see that the A-armed Uniform is fully explo-
rative as it does not intend to minimize regret (as opposed to Thomp) and
does not explore with the knowledge of feature representation. Therefore
the training data is very diverse which results in PreDeToR (-τ) being
able to predict the reward vectors for actions very well. Consequently,
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PreDeToR (-τ) perfectly matches the LinUCB algorithm. Note that AD per-
forms the worst as it matches the performance of its demonstrator whereas
the performance of DPT-greedy suffers due to the lack of information on
the optimal action during training.

E.13 Empirical Validation of Theoretical Result
In this section, we empirically validate the theoretical result proved in
Section 6.6. We again consider the linear bandit setting discussed in Sec-
tion 6.3. Recall that the linear bandit setting consist of horizon n = 25,
Mpre = {100000, 200000},Mtest = 200, A = 10, and d = 2. The demonstra-
tor πw is the Thomp algorithm and we observe that PreDeToR (-τ) has
lower cumulative regret than DPT-greedy, AD and matches the perfor-
mance of LinUCB.

Baseline (LinUCB-τ): We define soft LinUCB (LinUCB-τ) as follows:
At every round t for task m, it calculates the ucb value Bm,a,t for each
action xm,a ∈ X such that Bm,a,t = x⊤

m,aθ̂m,t−1 + α∥xm,a∥Σ−1
m,t−1

where
α > 0 is a constant and θ̂m,t is the estimate of the model parameter θm,∗ at
round t. Here, Σm,t−1 =

∑t−1
s=1 xm,sx⊤

m,s+λId is the data covariance matrix
or the arms already tried. Then it chooses It ∼ softmaxτa(Bm,a,t), where
softmaxτa(·) ∈ △A denotes a softmax distribution over the actions and τ is
a temperature parameter (See Section 6.3 for definition of softmaxτa(·)).

Outcomes: We first discuss the main outcomes of our experimental
results:

Finding 16: PreDeToR (-τ) excels in predicting the rewards for test
tasks when the number of training (source) tasks is large.

Experimental Result: These findings are reported in Figure E.15. In
Figure E.15a we show the prediction error of PreDeToR (-τ) for each task
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(a) Prediction Error for 105

tasks
(b) Prediction Error for 2×105

tasks
(c) Cumulative Regret of Pre-
DeToR (-τ) compared against
LinUCB-τ

Figure E.15: Empirical validation of theoretical analysis

m ∈ [Mtest]. The prediction error is calculated as (µ̂m,n,∗(a) − µm,∗(a))
2

where µ̂m,n,∗(a) = maxa θ̂⊤
m,nxm(a) is the empirical mean at the end of

round n, and µ∗,m(a) = maxa θ⊤
m,∗xm(a) is the true mean of the optimal

action in task m. Then we average the prediction error for the action
a ∈ [A] by the number of times the action a is the optimal action in some
taskm. We see that when the source tasks are 100000 the reward prediction
falls short of LinUCB prediction for all actions except action 2.

In Figure E.15b we again show the prediction error of PreDeToR (-τ)
for each task m ∈ [Mtest] when the source tasks are 200000. Note that
in both these settings, we kept the horizon n = 25, and the same set
of actions. We now observe that the reward prediction almost matches
LinUCB prediction in almost all the optimal actions.

In Figure E.15c we compare PreDeToR (-τ) against LinUCB-τ and show
that they almost match in the linear bandit setting discussed in Section 6.3
when the source tasks are 100000.

E.14 Empirical Study: Offline Performance
In this section, we discuss the offline performance of PreDeToR when the
number of tasksMpre ≫ A ⩾ n.
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We first discuss how PreDeToR (-τ) is modified for the offline setting.
In the offline setting, the PreDeToR first samples a task m ∼ Ttest, then the
test dataset Hm ∼ Dtest(·|m). Then PreDeToR and PreDeToR-τ act similarly
to the online setting, but based on the entire offline dataset Hm. The full
pseudocode of PreDeToR is in Algorithm 13.

Algorithm 13 Pre-trained Decision Transformer with Reward Estimation
(PreDeToR)

1: Collecting Pretraining Dataset
2: Initialize empty pretraining dataset Htrain
3: for i in [Mpre] do
4: Sample taskm ∼ Tpre, in-context dataset Hm ∼ Dpre(·|m) and add

this to Htrain.
5: Pretraining model on dataset
6: Initialize model TΘ with parameters Θ
7: while not converged do
8: Sample Hm from Htrain and predict r̂m,t for action (Im,t) for all
t ∈ [n]

9: Compute loss in (6.3) with respect to rm,t and backpropagate to
update model parameter Θ.

10: Offline test-time deployment
11: Sample unknown taskm ∼ Ttest, sample dataset Hm ∼ Dtest(·|m)
12: Use TΘ onm at round t to choose

It

{
= argmaxa∈A TΘ (̂rm,t(a) | Hm) , PreDeToR
∼ softmaxτaTΘ (̂rm,t(a) | Hm) , PreDeToR-τ

Recall that Dtest denote a distribution over all possible interactions that
can be generated by πw during test time. For offline testing, first, a test
taskm ∼ Ttest, and then an in-context test dataset Hm is collected such that
Hm ∼ Dtest(·|m). Observe from Algorithm 13 that in the offline setting,
PreDeToR first samples a task m ∼ Ttest, and then a test dataset Hm ∼

Dtest(·|m) and acts greedily. Crucially in the offline setting the PreDeToR
does not add the observed reward rt at round t to the dataset. Through
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this experiment, we want to evaluate the performance of PreDeToR to
learn the underlying latent structure and reward correlation when the
horizon is small. Finally, recall that when the horizon is small the weak
demonstrator πw does not have sufficient samples for each action. This
leads to a poor approximation of the greedy action.

Baselines: We again implement the same baselines discussed in Sec-
tion 6.3. The baselines are PreDeToR, PreDeToR-τ, DPT-greedy, AD,
Thomp, and LinUCB. During test time evaluation for offline setting the
DPT selects It = âm,t,∗ where âm,t,∗ = argmaxa TΘ(a|Ht

m) is the pre-
dicted optimal action.

Outcomes: We first discuss the main outcomes of our experimental
results for increasing the horizon:

Finding 17: PreDeToR (-τ) performs comparably to DPT-greedy
and AD in the offline setting.

(a) Offline for Linear setting (b) Offline for Non-linear setting

Figure E.16: Offline experiment. The y-axis shows the cumulative reward.

Experimental Result: We observe these outcomes in Figure E.16. In
Figure E.16 we show the linear bandit setting for horizon n = 20,Mpre =

200000, Mtest = 5000, A = 20, and d = 5 for the low data regime. Again,
the demonstrator πw is the Thomp algorithm. We observe that PreDeToR
(-τ) has comparable cumulative regret to DPT-greedy. Note that for any
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task m for the horizon n = 20 the Thomp will be able to sample all the
actions at most once. In the non-linear setting of Figure E.16b the n = 40,
Mpre = 100000, A = 6, d = 2. Observe that in all of these results, the
performance of PreDeToR (-τ) is comparable with respect to cumulative
regret against DPT-greedy.

E.15 Theoretical Analysis

Proof of Lemma 1

Proof. The learner collects n rounds of data following πw. The weak
demonstrator πw only observes the {It, rt}nt=1. Recall that Nn(a) denotes
the total number of times the action a is sampled for n rounds. Define the
matrix Hn ∈ Rn×A where the t-th row represents the action sampled at
round t ∈ [n]. The t-th row is a one-hot vector with 1 as the a-th compo-
nent in the vector for a ∈ [A]. Then define the reward vector Yn ∈ Rn as
the reward vector where the t-th component is the observed reward for
the action It for t ∈ [n]. Finally define the diagonal matrix DA ∈ RA×A as
in (E.1) and the estimated reward covariance matrix as SA ∈ RA×A such
that SA(a,a ′) = µ̂n(a)µ̂n(a

′). This matrix captures the reward correlation
between the pairs of actions a,a ′ ∈ [A].

Assume µ ∼ N(0, S∗) where S∗ ∈ RA×A. Then the observed mean
vector Yn is

Yn = Hnµ+ HnD1/2
A ηn

where, ηn is the noise vector over the [n] training data. Then the posterior
mean of µ̂ by Gauss Markov Theorem (Johnson et al., 2002) is given by

µ̂ = S∗H⊤
n

(
Hn(S∗ + DA)H⊤

n

)−1 Yn. (E.3)
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However, the learner does not know the true reward co-variance matrix.
Hence it needs to estimate the S∗ from the observed data. Let the estimate
be denoted by SA.

Assumption 13. We assume that πw is sufficiently exploratory so that each
action is sampled at least once.

The Assumption 13 ensures that the matrix
(
σ2
θHn(SA + DA)H⊤

n

)−1 is
invertible. Under Assumption 13, plugging the estimate SA back in (E.3)
shows that the average posterior mean over all the tasks is

µ̂ = SAH⊤
n

(
Hn(SA + DA)H⊤

n

)−1 Yn. (E.4)

The claim of the lemma follows.

E.16 Generalization and Transfer Learning
Proof for PreDeToR

Generalization Proof

Alg is the space of algorithms induced by the transformer TΘ.

Theorem E.1. (PreDeToR risk) Suppose error stability Assumption 9 holds
and assume loss function ℓ(·, ·) is C-Lipschitz for all rt ∈ [0,B] and horizon
n ⩾ 1. Let T̂ be the empirical solution of (ERM) and N(A, ρ, ϵ) be the covering
number of the algorithm space Alg following Definition E.2 and E.3. Then
with probability at least 1 − 2δ, the excess Multi-task learning (MTL) risk of
PreDeToR-τ is bounded by

RMTL(T̂) ⩽ 4 C√
nM

+ 2(B+ K logn)
√

log(N(Alg,ρ,ε)/δ)
cnM

where, N(Alg, ρ, ε) is the covering number of transformer T̂.
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Proof. We consider a meta-learning setting. Let M source tasks are i.i.d.
sampled from a task distribution T, and let T̂ be the empirical Multi-
task (MTL) solution. Define Hall =

⋃M
m=1 Hm. We drop the Θ, r from

transformer notation TFr
Θ as we keep the architecture fixed as in Lin et al.

(2023). Note that this transformer predicts a reward vector over the actions.
To be more precise we denote the reward predicted by the transformer at
round t after observing history Ht−1

m and then sampling the action amt as
T
(
r̂mt(amt)|H

t−1
m ,amt

)
. Define the training risk

L̂Hall(T) =
1
nM

M∑
m=1

n∑
t=1

ℓ
(
rmt(amt), T

(
r̂mt(amt)|H

t−1
m ,amt

))
and the test risk

LMTL(T) = E
[
L̂Hall (T)

]
.

Define empirical risk minima T̂ = arg minT∈Alg L̂Hall (T) and population
minima

T∗ = arg min
T∈Alg

LMTL(T)

In the following discussion, we drop the subscripts MTL and Hall. The
excess MTL risk is decomposed as follows:

RMTL(T̂) = L(T̂) − L (T∗)

= L(T̂) − L̂(T̂)︸ ︷︷ ︸
a

+ L̂(T̂) − L̂ (T∗)︸ ︷︷ ︸
b

+ L̂ (T∗) − L(T∗︸ ︷︷ ︸
c

).

Since T̂ is the minimizer of empirical risk, we have b ⩽ 0.
Step 1: (Concentration bound |L(T) − L̂(T)| for a fixed T ∈ Alg)
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Define the test/train risks of each task as follows:

L̂m(T) :=
1
n

n∑
t=1

ℓ
(
rmt(amt), T

(
r̂mt(amt)|H

t−1
m ,amt

))
, and

Lm(T) := EHm

[
L̂m(T)

]
= EHm

[
1
n

n∑
t=1

ℓ
(
rmt(amt), T

(
r̂mt(amt)|H

t−1
m ,amt

))]
, ∀m ∈ [M].

Define the random variables Xm,t = E
[
L̂t(T) | Ht

m

]
for t ∈ [n] and m ∈

[M], that is, Xm,t is the expectation over L̂t(T) given training sequence
Ht
m = {(amt ′ , rmt ′)}tt ′=1 (which are the filtrations). With this, we have

that Xm,n = E
[
L̂m(T) | Hn

m

]
= L̂m(T) and Xm,0 = E

[
L̂m(T)

]
= Lm(T).

More generally, (Xm,0,Xm,1, . . . ,Xm,n) is a martingale sequence since, for
every m ∈ [M], we have that E

[
Xm,i | H

t−1
m

]
= Xm,t−1. For notational

simplicity, in the following discussion, we omit the subscriptm from a, r
and H as they will be clear from the left-hand-side variable Xm,t. We have
that

Xm,t = E

[
1
n

n∑
t=1

ℓ
(
rt ′ , TF

(
r̂t ′ |H

t ′−1,at ′
))∣∣∣∣∣ Ht

]

=
1
n

t∑
t ′=1

ℓ
(
rt ′ , TF

(
r̂t ′ |H

t ′−1,at ′
))

+
1
n

n∑
t ′=t+1

E
[
ℓ
(
rt ′ , TF

(
r̂t ′ |H

t ′−1,at ′
))

| Ht
]

Using the similar steps as in Li et al. (2023) we can show that

|Xm,t − Xm,t−1|
(a)

⩽
B

n
+

n∑
t ′=t+1

K

t ′n
⩽
B+ K logn

n
.

where, (a) follows by using the fact that loss function ℓ(·, ·) is bounded by
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B, and error stability assumption.
Recall that

∣∣∣Lm(T) − L̂m(T)
∣∣∣ = |Xm,0 − Xm,n| and for every m ∈ [M],

we have
∑n
t=1 |Xm,t − Xm,t−1|

2 ⩽ (B+K logn)2

n
. As a result, applying Azuma-

Hoeffding’s inequality, we obtain

P
(∣∣∣Lm(T) − L̂m(T)

∣∣∣ ⩾ τ) ⩽ 2e−
nτ2

2(B+K logn)2 , ∀m ∈ [M] (E.5)

Let us consider Ym := Lm(T) − L̂m(T) for m ∈ [M]. Then, (Ym)Mm=1 are
i.i.d. zero mean sub-Gaussian random variables. There exists an absolute
constant c1 > 0 such that, the subgaussian norm, denoted by ∥ · ∥ψ2 ,
obeys ∥Ym∥2

ψ2
<
c1(B+K logn)2

n
via Proposition 2.5.2 of (Vershynin, 2018).

Applying Hoeffding’s inequality, we derive

P

(∣∣∣∣∣ 1
M

M∑
m=1

Yt

∣∣∣∣∣ ⩾ τ
)

⩽ 2e−
cnMτ2

(B+K logn)2 =⇒ P(|L̂(T) − L(T)| ⩾ τ) ⩽ 2e−
cnMτ2

(B+K logn)2

where c > 0 is an absolute constant. Therefore, we have that for any
T ∈ Alg, with probability at least 1 − 2δ,

|L̂(T) − L(T)| ⩽ (B+ K logn)
√

log(1/δ)
cnM

(E.6)

Step 2: (Bound supT∈Alg |L(T) − L̂(T)| where Alg is assumed to be a
continuous search space). Let

h(T) := L(T) − L̂(T)

and we aim to bound supT∈Alg |h(T)|. Following Theorem E.3, for ε > 0, let
Algε be a minimal ε-cover of Alg in terms of distance metric ρ. Therefore,
Algε is a discrete set with cardinality

∣∣Algε
∣∣ := N(Alg, ρ, ε). Then, we
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have

sup
T∈Alg

|L(T) − L̂(T)| ⩽ sup
T∈Alg′

min
T∈Algε

|h(T) − h (T′)|+ max
T∈Algε

|h(T)|.

We will first bound the quantity supT∈Alg′ minT∈Algε |h(T) − h (T
′)|. We

will utilize that loss function ℓ(·, ·) is C-Lipschitz. For any T ∈ Alg, let
T ∈ Algε be its neighbor following Theorem E.3. Then we can show that∣∣∣L̂(TF) − L̂ (TF′)

∣∣∣
=

∣∣∣∣ 1
nM

M∑
m=1

n∑
t=1

(
ℓ
(
rmt(amt), T

(
r̂mt(amt)|H

t−1
m ,amt

))
−ℓ
(
rmt(amt), T ′ (r̂mt(amt)|Ht−1

m ,amt
))) ∣∣∣∣

⩽
L

nM

M∑
m=1

n∑
t=1

∥∥T
(
r̂mt(amt)|H

t−1
m ,amt

)
− T ′ (r̂mt(amt)|Ht−1

m ,amt
)∥∥
ℓ2

⩽ Lε.

Note that the above bound applies to all data-sequences, we also obtain
that for any T ∈ Alg,

|L(TF) − L (TF′)| ⩽ Lε.

Therefore we can show that,

sup
T∈Alg

min
T
∈ Algε |h(T) − h (TF

′)|

⩽ sup
T∈Alg

min
T
∈ Algε

∣∣∣L̂(T) − L̂ (T′)
∣∣∣+ |L(T) − L (T′)| ⩽ 2Lε. (E.7)

Next we bound the second term maxT∈Algε |h(T)|. Applying union
bound directly on Algε and combining it with (E.6), then we will have
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that with probability at least 1 − 2δ,

max
T∈Algε

|h(T)| ⩽ (B+ K logn)
√

log(N(Alg, ρ, ε)/δ)
cnM

Combining the upper bound above with the perturbation bound (E.7),
we obtain that

max
T∈Alg

|h(T)| ⩽ 2Cε+ (B+ K logn)
√

log(N(Alg, ρ, ε)/δ)
cnM

.

It follows then that

RMTL(T̂) ⩽ 2 sup
T∈Alg

|L(T) − L̂(T)| ⩽ 4Cε+ 2(B+ K logn)
√

log(N(Alg, ρ, ε)/δ)
cnM

Again by setting ε = 1/
√
nM

L(T̂) − L (T∗) ⩽
4C√
nM

+ 2(B+ K logn)
√

log(N(Alg, ρ, ε)/δ)
cnM

The claim of the theorem follows.

Definition E.2. (Covering number) LetQ be any hypothesis set and d (q,q′) ⩾

0 be a distance metric over q,q′ ∈ Q. Then, Q̄ = {q1, . . . ,qN} is an ε-cover ofQ
with respect to d(·, ·) if for any q ∈ Q, there exists qi ∈ Q̄ such that d (q,qi) ⩽ ε.
The ε-covering number N(Q,d, ε) is the cardinality of the minimal ε-cover.

Definition E.3. (Algorithm distance). Let Alg be an algorithm hypothe-
sis set and H = (at, rt)nt=1 be a sequence that is admissible for some task
m ∈ [M]. For any pair T, T′ ∈ Alg, define the distance metric ρ (T, T′) :=

sup
H

1
n

∑n
t=1
∥∥T
(
r̂t|H

t−1,at
)
− T′ (r̂t|Ht−1,at

)∥∥
ℓ2

.

Remark E.4. (Stability Factor) The work of Li et al. (2023) also characterizes
the stability factor K in Assumption 9 with respect to the transformer architecture.
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Assuming loss ℓ(·, ·) is C-Lipschitz, the algorithm induced by T(·) obeys the sta-
bility assumption with K = 2C

(
(1 + Γ)eΓ

)L, where the norm of the transformer
weights are upper bounded by O(Γ) and there are L-layers of the transformer.

Remark E.5. (Covering Number) From Lemma 16 of Lin et al. (2023) we
have the following upper bound on the covering number of the transformer class
TΘ as

log(N(Alg, ρ, ε)) ⩽ O(L2D2J)

where L is the total number of layers of the transformer and J and, D denote the
upper bound to the number of heads and hidden neurons in all the layers respec-
tively. Note that this covering number holds for the specific class of transformer
architecture discussed in section 2 of (Lin et al., 2023).

Generalization Error to New Task

Theorem E.6. (Transfer Risk) Consider the setting of Theorem 6.1 and assume
the source tasks are independently drawn from task distribution T. Let T̂F be the
empirical solution of (ERM) and g ∼ T. Then with probability at least 1 − 2δ,
the expected excess transfer learning risk is bounded by

Eg
[
Rg(T̂)

]
⩽ 4 C√

M
+ B

√
2 log(N(Alg,ρ,ε)/δ)

M

where, N(Alg, ρ, ε) is the covering number of transformer T̂.

Proof. Let the target task g be sampled from T, and the test set Hg =

{at, rt}nt=1. Define empirical and population risks on g as

L̂g(T) =
1
n

n∑
t=1

ℓ
(
rt(amt), T

(
r̂t(amt)|H

t−1
g ,at

))
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and Lg(T) = EHg

[
L̂g(T)

]
. Again we drop Θ from the transformer nota-

tion. Then the expected excess transfer risk following (ERM) is defined
as

Eg
[
Rg(T̂)

]
= EHg

[
Lg(T̂)

]
− arg min

T∈Alg
EHg

[Lg(T)] . (E.8)

where A is the set of all algorithms. The goal is to show a bound like this

Eg
[
Rg(T̂)

]
⩽ min

ε⩾0

{
4Cε+ B

√
2 log(N(Alg, ρ, ε)/δ)

T

}

where N(Alg, ρ, ε) is the covering number.
Step 1 ((Decomposition): Let T∗ = arg minT∈Alg Eg [Lg(T)]. The

expected transfer learning excess test risk of given algorithm T̂ ∈ Alg is
formulated as

L̂m(T) :=
1
n

n∑
t=1

ℓ
(
rmt(amt), T

(
r̂mt(amt)|D

t−1
m ,amt

))
, and

Lm(T) := EHm

[
L̂t(T)

]
= EHm

[
1
n

n∑
t=1

ℓ
(
rmt(amt), T

(
r̂mt(amt)|D

t−1
m ,amt

))]
, ∀m ∈ [M].

Then we can decompose the risk as

Eg
[
Rg(T̂)

]
= Eg

[
Lg(T̂)

]
− Eg [Lg (T∗)]

= Eg
[
Lg(T̂)

]
− L̂Hall(T̂)︸ ︷︷ ︸
a

+ L̂Hall (T̂) − L̂Hall (T
∗)︸ ︷︷ ︸

b

+ L̂Hall (T
∗) − Eg [Lg (T∗)]︸ ︷︷ ︸

c

.
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Here since T̂ is the minimizer of training risk, b < 0. Then we obtain

Eg
[
Rg(T̂)

]
⩽ 2 sup

T∈Alg

∣∣∣∣∣Eg [Lg(T)] − 1
M

M∑
m=1

L̂m(T)

∣∣∣∣∣ . (E.9)

Step 2 (Bounding (E.9))For any T ∈ Alg, let Xt = L̂t(T) and we observe
that

Em∼T [Xt] = Em∼T

[
L̂m(T)

]
= Em∼T [Lm(T)] = Eg [Lg(T)]

Since Xm,m ∈ [M] are independent, and 0 ⩽ Xm ⩽ B, applying Hoeffd-
ing’s inequality obeys

P

(∣∣∣∣∣Eg [Lg(T)] − 1
M

M∑
m=1

L̂m(T)

∣∣∣∣∣ ⩾ τ
)

⩽ 2e−
2Mτ2
B2 .

Then with probability at least 1 − 2δ, we have that for any T ∈ Alg,∣∣∣∣∣Eg [Lg(T)] − 1
M

M∑
m=1

L̂m(T)

∣∣∣∣∣ ⩽ B
√

log(1/δ)
2M . (E.10)

Next, let Algε be the minimal ε-cover of Alg following Theorem E.2,
which implies that for any task g ∼ T, and any T ∈ Alg, there exists
T′ ∈ Algε

|Lg(T) − Lg (T′)| ,
∣∣∣L̂g(T) − L̂g (T′)

∣∣∣ ⩽ Cε. (E.11)

Since the distance metric following Definition 3.4 is defined by the
worst-case datasets, then there exists T′ ∈ Algε such that∣∣∣∣∣Eg [Lg(T)] − 1

M

M∑
m=1

L̂m(T)

∣∣∣∣∣ ⩽ 2Cε.
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Let N(Alg, ρ, ε) =
∣∣Algε

∣∣ be the ε-covering number. Combining the
above inequalities ((E.9), (E.10), and (E.11)), and applying union bound,
we have that with probability at least 1 − 2δ,

Eg
[
Rg(T̂)

]
⩽ min

ε⩾0

{
4Cε+ B

√
2 log(N(Alg, ρ, ε)/δ)

M

}

Again by setting ε = 1/
√
M

L(T̂) − L (T∗) ⩽
4C√
M

+ 2B
√

log(N(Alg, ρ, ε)/δ)
cM

The claim of the theorem follows.

Remark E.7. (Dependence on n) In this remark, we briefly discuss why the
expected excess risk for target task T does not depend on samples n. The work of Li
et al. (2023) pointed out that the MTL pretraining process identifies a favorable
algorithm that lies in the span of the M source tasks. This is termed as inductive
bias (see section 4 of Li et al. (2023)) (Soudry et al., 2018; Neyshabur et al.,
2017). Such bias would explain the lack of dependence of the expected excess
transfer risk on n during transfer learning. This is because given a target task
g ∼ T, the T can use the learnt favorable algorithm to conduct a discrete search
over span of theM source tasks and return the source task that best fits the new
target task. Due to the discrete search space over the span ofM source tasks, it is
not hard to see that, we need n ∝ log(M) samples (which is guaranteed by the
M source tasks) rather than n ∝ d (for the linear setting).
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E.17 Table of Notations

Notations Definition
M Total number of tasks
d Dimension of the feature
Am Action set of them-th task
Xm Feature space ofm-th task
Mtest Tasks for testing
Mpre Total Tasks for pretraining
x(m,a) Feature of action a in taskm
θm,∗ Hidden parameter for the taskm
Tpre Pretraning distribution on tasks
Ttest Testing distribution on tasks
n Total horizon for each taskm
Hm = {It, rt}nt=1 Dataset sampled for them-th task containing

n samples
Ht
m = {Is, rs}ts=1 Dataset sampled for them-th task containing

samples from round s = 1 to t
w Transformer model parameter
Tw Transformer with model parameter w
Dpre Pretraining in-context distribution
Htrain Training in-context dataset
Dtest Testing in-context distribution

Table E.1: Table of Notations for PreDeToR
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f appendix: optimal design for human
preference elicitation

F.1 Proofs
This section contains proofs of our main claims.

Proof of theorem 7.1

We follow the sketch of the proof in Section 21.1 of Lattimore and Szepesvári
(2020a) and adapt it to matrices. Before we start, we prove several helpful
claims.

First, using (43) in Petersen and Pedersen (2012), we have

∂

∂π(i)
f(π) =

∂

∂π(i)
log det(Vπ) = Tr

(
V−1
π

∂

∂π(i)
Vπ
)

= Tr(V−1
π AiA⊤

i ) = Tr(A⊤
i V−1

π Ai) .

In the last step, we use the cyclic property of the trace. We define the
gradient of f(π) with respect to π as∇f(π) = (Tr(A⊤

i V−1
π Ai))Li=1. Second,

using basic properties of the trace, we have

L∑
i=1

π(i)Tr(A⊤
i V−1

π Ai) =
L∑
i=1

π(i)Tr(V−1
π AiA⊤

i ) = Tr
(

L∑
i=1

π(i)V−1
π AiA⊤

i

)
(F.1)

= Tr
(

V−1
π

L∑
i=1

π(i)AiA⊤
i

)
= Tr(Id) = d .
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Finally, for any distribution π, (F.1) implies

g(π) = max
i∈[L]

Tr(A⊤
i V−1

π Ai) ⩾
L∑
i=1

π(i)Tr(A⊤
i V−1

π Ai) = d . (F.2)

Now we are ready to start the proof.
(b) ⇒ (a): Let π∗ be a maximizer of f(π). By first-order optimality

conditions, for any distribution π, we have

0 ⩾ ⟨∇f(π∗),π− π∗⟩ =
L∑
i=1

π(i)Tr(A⊤
i V−1

π∗
Ai) −

L∑
i=1

π∗(i)Tr(A⊤
i V−1

π∗
Ai)

=

L∑
i=1

π(i)Tr(A⊤
i V−1

π∗
Ai) − d .

In the last step, we use (F.1). Since this inequality holds for any distribution
π, including Dirac at i for any i ∈ [L], we have thatd ⩾ maxi∈[L] Tr(A⊤

i V−1
π∗

Ai) =
g(π∗). Finally, (F.2) says that for any distribution π, g(π) ⩾ d. Therefore,
π∗ must be a minimizer of g(π) and g(π∗) = d.

(c)⇒ (b): Note that

⟨∇f(π∗),π− π∗⟩ =
L∑
i=1

π(i)Tr(A⊤
i V−1

π∗
Ai) − d

⩽ max
i∈[L]

Tr(A⊤
i V−1

π∗
Ai) − d = g(π∗) − d

holds for any distributions π and π∗. Since g(π∗) = d, we have ⟨∇f(π∗),π−
π∗⟩ ⩽ 0. Therefore, by first-order optimality conditions, π∗ is a maximizer
of f(π).

(a) ⇒ (c): This follows from the same argument as in (b) ⇒ (a). In
particular, we show there that the maximizer π∗ of f(π) is the minimizer
of g(π), and that g(π∗) = d.

To prove that |supp (π∗) | ⩽ d(d + 1)/2, we argue that π∗ can be sub-
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stituted for a distribution with a lower support whenever |supp (π∗) | >

d(d+ 1)/2. The claim then follows by induction.
Let S = supp (π∗) and suppose that |S| > d(d + 1)/2. We start with

designing a suitable family of optimal solutions. Since the space of d× d
symmetric matrices has d(d + 1)/2 dimensions, there must exist an L-
dimensional vector η such that supp (η) ⊆ S and∑

i∈S

η(i)AiA⊤
i = 0d,d , (F.3)

where 0d,d is a d×d zero matrix. Let πt = π∗+ tη for t ⩾ 0. An important
property of πt is that

log det(Vπt) = log det
(

Vπ∗ + t
∑
i∈S

η(i)AiA⊤
i

)
= log det(Vπ∗) .

Therefore, πt is also an optimal solution. However, it may not be a distri-
bution.

We prove that πt ∈ ∆L, for some t > 0, as follows. First, note that
Tr(A⊤

i V−1
π∗

Ai) = d holds for any i ∈ S. Otherwise π∗ could be improved.
Using this observation, we have

d
∑
i∈S

η(i) =
∑
i∈S

η(i)Tr(A⊤
i V−1

π∗
Ai) =

∑
i∈S

η(i)Tr(V−1
π∗

AiA⊤
i )

= Tr
(

V−1
π∗

∑
i∈S

η(i)AiA⊤
i

)
= 0 ,

where the last equality follows from (F.3). This further implies that∑
i∈S η(i) = 0, and in turn that πt ∈ ∆L, for as long as πt ⩾ 0L.
Finally, we take the largest feasible t, τ = max{t > 0 : πt ∈ ∆L}, and

note that πτ has at least one more non-zero entry than π∗ while having
the same value. This concludes the proof.
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Proof of theorem 7.2

We start by noting that for any list i ∈ [L],

∑
a∈Ai

∥a∥2
Σ

−1
n

= Tr(A⊤
i Σ

−1
n Ai) = Tr

A⊤
i

(
n∑
t=1

K∑
k=1

xIt,kx⊤
It,k

)−1

Ai


=

1
n

Tr

A⊤
i

(
L∑
i=1

π∗(i)

K∑
k=1

xi,kx⊤
i,k

)−1

Ai

 =
1
n

Tr(A⊤
i V−1

π∗
Ai) .

The third equality holds because all nπ∗(i) are integers and n > 0. In
this case, the optimal design is exact and Σn invertible, because all of
its eigenvalues are positive. Now we use the definition of g(π∗), apply
theorem 7.1, and get that

max
i∈[L]

Tr(A⊤
i V−1

π∗
Ai) = g(π∗) = d .

This concludes the proof.

Proof of theorem 7.3

For any list i ∈ [L], we have

Tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai)

=
∑
a∈Ai

(a⊤(θ̂n − θ∗))
2 =

∑
a∈Ai

(a⊤Σ
−1/2
n Σ

1/2
n (θ̂n − θ∗))

2

⩽
∑
a∈Ai

∥a∥2
Σ

−1
n

∥θ̂n − θ∗∥2
Σn

,
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where the last step follows from the Cauchy-Schwarz inequality. It follows
that

max
i∈[L]

Tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) ⩽ max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

∥θ̂n − θ∗∥2
Σn

= max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n︸ ︷︷ ︸

Part I

n∥θ̂n − θ∗∥2
Σn︸ ︷︷ ︸

Part II

,

where we use Σn = nΣn in the last step.
Part I captures the efficiency of data collection and depends on the

optimal design. By theorem 7.2,

max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

=
d

n
.

Part II measures how the estimated model parameter θ̂n differs from the
true model parameter θ∗, under the empirical covariance matrix Σn. For
Part II, we use theorem F.1 and get that

∥θ̂n − θ∗∥2
Σn

⩽
16d+ 8 log(1/δ)

n

holds with probability at least 1 − δ. The main claim follows from combin-
ing the upper bounds on Parts I and II.

Proof of theorem 7.4

From the definition of ranking loss, we have

E[Rn] =
L∑
i=1

K∑
j=1

K∑
k=j+1

E[1{σ̂n,i(j) > σ̂n,i(k)}] =

L∑
i=1

K∑
j=1

K∑
k=j+1

P
(

x⊤
i,jθ̂n < x⊤

i,kθ̂n

)
.
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In the rest of the proof, we bound each term separately. Specifically, for
any list i ∈ [L] and items (j,k) ∈ Π2(K) in it, we have

P
(

x⊤
i,jθ̂n < x⊤

i,kθ̂n

)
= P

(
x⊤
i,kθ̂n − x⊤

i,jθ̂n > 0
)

= P
(

x⊤
i,kθ̂n − x⊤

i,jθ̂n + ∆i,j,k > ∆i,j,k

)
= P

(
x⊤
i,kθ̂n − x⊤

i,jθ̂n + x⊤
i,jθ∗ − x⊤

i,kθ∗ > ∆i,j,k

)
= P

(
x⊤
i,k(θ̂n − θ∗) + x⊤

i,j(θ∗ − θ̂n) > ∆i,j,k

)
⩽ P

(
x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
+ P

(
x⊤
i,j(θ∗ − θ̂n) >

∆i,j,k

2

)
.

In the third equality, we use that ∆i,j,k = (xi,j − xi,k)⊤θ∗. The last step
follows from the fact that event A + B > c occurs only if A > c/2 or
B > c/2.

Now we bound P
(

x⊤
i,k(θ̂n − θ∗) > ∆i,j,k/2

)
and note that the other

term can be bounded analogously. Specifically, we apply theorems F.2
and 7.2, and get

P
(

x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
⩽ exp

− ∆2
i,j,k

4∥xi,k∥2
Σ

−1
n

 ⩽ exp
[
−
∆2
i,j,kn

4d

]
.

This concludes the proof.
The above approach relies on the concentration of x⊤

i,k(θ̂n−θ∗), which
is proved in theorem F.2. An alternative way of proving is a similar result
is through the Cauchy-Schwarz inequality. This is useful when a high-
probability bound on ∥θ̂n−θ∗∥2

Σn
is available, as in section F.1. Specifically,
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by the Cauchy-Schwarz inequality

P
(

x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
⩽ P

(
∥xi,k∥Σ−1

n
∥θ̂n − θ∗∥Σn >

∆i,j,k

2

)
= P

(
∥xi,k∥2

Σ−1
n
∥θ̂n − θ∗∥2

Σn
>
∆2
i,j,k

4

)

⩽ P

(
∥θ̂n − θ∗∥2

Σn
>
∆2
i,j,k

4d

)
.

In the second inequality, we use that ∥xi,k∥2
Σ−1
n

= n∥xi,k∥2
Σ

−1
n

⩽ d, which
follows from theorem 7.2. Finally, theorem F.1 says that

P
(
∥θ̂n − θ∗∥2

Σn
⩾

16d+ 8 log(1/δ)
n

)
⩽ δ

holds for any δ > 0. To apply this bound, we let

16d+ 8 log(1/δ)
n

=
∆2
i,j,k

4d

and express δ. This leads to

P

(
∥θ̂n − θ∗∥2

Σn
>
∆2
i,j,k

4d

)
⩽ δ = exp

[
−
∆2
i,j,kn

32d + 2d
]

,

which concludes the alternative proof.

Proof of theorem 7.5

Following the same steps as in section F.1, we have

max
i∈[L]

Tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) ⩽ max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n︸ ︷︷ ︸

Part I

K(K− 1)n
2 ∥θ̂n − θ∗∥2

Σn︸ ︷︷ ︸
Part II

.



528

Part I captures the efficiency of data collection and depends on the optimal
design. By theorem 7.2,

max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

=
d

n
.

Part II measures how the estimated model parameter θ̂n differs from
the true model parameter θ∗, under the empirical covariance matrix Σn.
For Part II, we use theorem F.3 (restatement of Theorem 4.1 in Zhu et al.
(2023b)) and get that

∥θ̂n − θ∗∥2
Σn

⩽
CK4(d+ log(1/δ))

n

holds with probability at least 1 − δ, where C > 0 is some constant. The
main claim follows from combining the upper bounds on Parts I and II.

Proof of theorem 7.6

Following the same steps as in section F.1, we get

P
(

x⊤
i,jθ̂n < x⊤

i,kθ̂n

)
= P

(
x⊤
i,k(θ̂n − θ∗) + x⊤

i,j(θ∗ − θ̂n) > ∆i,j,k

)
= P

(
z⊤
i,j,k(θ∗ − θ̂n) > ∆i,j,k

)
⩽ P

(
∥zi,j,k∥Σ−1

n
∥θ̂n − θ∗∥Σn > ∆i,j,k

)
= P

(
∥zi,j,k∥2

Σ−1
n
∥θ̂n − θ∗∥2

Σn
> ∆2

i,j,k

)
⩽ P

(
∥θ̂n − θ∗∥2

Σn
>
∆2
i,j,k

d

)
.

In the first inequality, we use the Cauchy-Schwarz inequality. In the second
inequality, we use that ∥zi,j,k∥2

Σ−1
n

= n∥zi,j,k∥2
Σ

−1
n

⩽ d, which follows from



529

theorem 7.2. Finally, theorem F.3 says that

P
(
∥θ̂n − θ∗∥2

Σn
⩾
CK4(d+ log(1/δ))

n

)
⩽ δ

holds for any δ > 0. To apply this bound, we let

CK4(d+ log(1/δ))
n

=
∆2
i,j,k

d

and express δ. This leads to

P

(
∥θ̂n − θ∗∥2

Σn
>
∆2
i,j,k

d

)
⩽ δ = exp

[
−
∆2
i,j,kn

CK4d
+ d

]
,

which concludes the proof.

F.2 Supporting Lemmas
This section contains our supporting lemmas and their proofs.

Lemma F.1. Consider the absolute feedback model in section 7.4. Fix δ ∈ (0, 1).
Then

∥θ̂n − θ∗∥2
Σn

⩽
16d+ 8 log(1/δ)

n

holds with probability at least 1 − δ.

Proof. Let X ∈ RKn×d be a matrix of Kn feature vectors in (7.7) and y ∈
RKn be a vector of the corresponding Kn observations. Under 1-sub-
Gaussian noise in (7.1), we can rewrite θ̂n − θ∗ as

θ̂n − θ∗ = (X⊤X)−1X⊤(y − Xθ∗) = (X⊤X)−1X⊤η ,
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where η ∈ RKn is a vector of independent 1-sub-Gaussian noise. Now
note that a⊤(X⊤X)−1X⊤ is a fixed vector of length Kn for any fixed a ∈ Rd.
Therefore, a⊤(θ̂n−θ∗) is a sub-Gaussian random variable with a variance
proxy

a⊤(X⊤X)−1X⊤X(X⊤X)−1a = a⊤(X⊤X)−1a = ∥a∥2
(X⊤X)−1 = ∥a∥2

Σ−1
n
/n .

From standard concentration inequalities for sub-Gaussian random vari-
ables (Boucheron et al., 2013),

P

a⊤(θ̂n − θ∗) ⩾

√
2∥a∥2

Σ−1
n

log(1/δ)
n

 ⩽ δ (F.4)

holds for any fixed a ∈ Rd. To bound ∥θ̂n − θ∗∥Σn , we take advantage of
the fact that

∥θ̂n − θ∗∥Σn = ⟨θ̂n − θ∗,Σ1/2
n A⟩ , A =

Σ
1/2
n (θ̂n − θ∗)

∥θ̂n − θ∗∥Σn
. (F.5)

While A ∈ Rd is random, it has two important properties. First, its length
is 1. Second, if it was fixed, we could apply (F.4) and would get

P

(
⟨θ̂n − θ∗,Σ1/2

n A⟩ ⩾
√

2 log(1/δ)
n

)
⩽ δ .

To eliminate the randomness in A, we use a coverage argument.
Let S = {a ∈ Rd : ∥a∥2 = 1} be a unit sphere. Lemma 20.1 in Lattimore

and Szepesvári (2020a) says that there exists an ε-cover Cε ⊂ Rd of S that
has at most |Cε| ⩽ (3/ε)d points. Specifically, for any a ∈ S, there exists
y ∈ Cε such that ∥a − y∥2 ⩽ ε. By a union bound applied to all points in
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Cε, we have that

P

(
∃ y ∈ Cε : ⟨θ̂n − θ∗,Σ1/2

n y⟩ ⩾
√

2 log(|Cε|/δ)
n

)
⩽ δ . (F.6)

Now we are ready to complete the proof. Specifically, note that

∥θ̂n − θ∗∥Σn
(a)
= max

a∈S
⟨θ̂n − θ∗,Σ1/2

n a⟩

= max
a∈S

min
y∈Cε

[
⟨θ̂n − θ∗,Σ1/2

n (a − y)⟩+ ⟨θ̂n − θ∗,Σ1/2
n y⟩

]
(b)
⩽ max

a∈S
min
y∈Cε

[
∥θ̂n − θ∗∥Σn∥a − y∥2 +

√
2 log(|Cε|/δ)

n

]
(c)
⩽ ε∥θ̂n − θ∗∥Σn +

√
2 log(|Cε|/δ)

n

holds with probability at least 1 − δ. In this derivation, (a) follows from
(F.5), (b) follows from the Cauchy-Schwarz inequality and (F.6), and (c)
follows from the definition of ε-cover Cε. Finally, we rearrange the terms,
choose ε = 1/2, and get that

∥θ̂n − θ∗∥Σn ⩽ 2
√

2 log(|Cε|/δ)
n

⩽ 2
√

(2 log 6)d+ 2 log(1/δ)
n

.

This concludes the proof.

Lemma F.2. Consider the absolute feedback model in section 7.4. Fix x ∈ Rd

and ∆ > 0. Then

P
(

x⊤(θ̂n − θ∗) > ∆
)
⩽ exp

− ∆2

2∥x∥2
Σ

−1
n

 .

Proof. The proof is from Section 2.2 in Jamieson and Jain (2022). Let
X ∈ RKn×d be a matrix of Kn feature vectors in (7.7) and y ∈ RKn be a
vector of the corresponding Kn observations. Under 1-sub-Gaussian noise
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in (7.1), we can rewrite x⊤(θ̂n − θ∗) as

x⊤(θ̂n − θ∗) = x⊤(X⊤X)−1X⊤︸ ︷︷ ︸
w

η = w⊤η =

Kn∑
t=1

wtηt ,

where w ∈ RKn is a fixed vector and η ∈ RKn is a vector of independent
sub-Gaussian noise. Then, for any ∆ > 0 and λ > 0, we have

P
(

x⊤(θ̂n − θ∗) > ∆
)

= P
(
w⊤η > ∆

)
= P

(
exp[λw⊤η] > exp[λ∆]

)
(a)
⩽ exp[−λ∆]E

[
exp

[
λ

Kn∑
t=1

wtηt

]]
(b)
⩽ exp[−λ∆]

Kn∏
t=1

E[exp[λwtηt]]

(c)
⩽ exp[−λ∆]

Kn∏
t=1

exp[λ2w2
t/2] = exp[−λ∆+ λ2∥w∥2

2/2]

(d)
⩽ exp

[
−

∆2

2∥w∥2
2

]
(e)
= exp

[
−

∆2

2x⊤(X⊤X)−1x

]

= exp

− ∆2

2∥x∥2
Σ

−1
n

 .

In the above derivation, (a) follows from Markov’s inequality, (b) follows
from independent noise, (c) follows from sub-Gaussianity, (d) follows
from setting λ = ∆/∥w∥2

2, and (e) follows from

∥w∥2
2 = x⊤(X⊤X)−1X⊤X(X⊤X)−1x = x⊤(X⊤X)−1x .

This concludes the proof.

Lemma F.3. Consider the ranking feedback model in section 7.5. Fix δ ∈ (0, 1).
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Then there exists a constant C > 0 such that

∥θ̂n − θ∗∥2
Σn

⩽
CK4(d+ log(1/δ))

n

holds with probability at least 1 − δ.

Proof. The proof has two main steps.
Step 1: We first prove that ℓn(θ) is strongly convex with respect to the

norm ∥ · ∥Σn at θ∗. This means that there exists γ > 0 such that

ℓn(θ∗ + ∆) ⩾ ℓn(θ∗) + ⟨∇ℓn(θ∗),∆⟩+ γ∥∆∥2
Σn

for all perturbations ∆ such that θ∗ + ∆ ∈Θ. To show this, we derive the
Hessian of ℓn(θ),

∇2ℓn(θ) =
1
n

n∑
t=1

K∑
j=1

K∑
k=j

K∑
k ′=j

exp[x⊤
It,σt(k)θ+ x⊤

It,σt(k ′)θ]

2
(∑K

ℓ=j exp[x⊤
It,σt(ℓ)θ]

)2 zIt,σt(k),σt(k ′)z⊤
It,σt(k),σt(k ′) .

Since ∥x∥ ⩽ 1 and ∥θ∥ ⩽ 1, we have exp[x⊤θ] ∈ [e−1, e], and thus

exp[x⊤
It,σt(k)θ+ x⊤

It,σt(k ′)θ]

2
(∑K

ℓ=j exp[x⊤
It,σt(ℓ)θ]

)2 ⩾
e−4

2(K− j)2 ⩾
e−4

2K(K− 1) .

We further have for any t ∈ [n] that

K∑
j=1

K∑
k=j

K∑
k ′=j

zIt,σt(k),σt(k ′)z⊤
It,σt(k),σt(k ′) ⪰

K∑
k=1

K∑
k ′=1

zIt,σt(k),σt(k ′)z⊤
It,σt(k),σt(k ′)

⪰ 2
K∑
k=1

K∑
k ′=k+1

zIt,k,k ′z⊤
It,k,k ′ .

The last step follows from the fact that σt is a permutation. Simply put,
we replace the sum of K2 outer products by all but the ones between the
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same vectors. Now we combine all claims and get

∇2ℓn(θ) ⪰
e−4

K(K− 1)n

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz⊤
It,j,k = γΣn

for γ = e−4/2. Therefore, ℓn(θ) is strongly convex at θ∗ with respect to
the norm ∥ · ∥Σn .

Step 2: Now we rearrange the strong convexity inequality and get

γ∥∆∥2
Σn

⩽ ℓn(θ∗ + ∆) − ℓn(θ∗) − ⟨∇ℓn(θ∗),∆⟩ ⩽ −⟨∇ℓn(θ∗),∆⟩ (F.7)

⩽ ∥∇ℓn(θ∗)∥Σ−1
n
∥∆∥Σn .

In the second inequality, we use that θ̂minimizes ℓn, and hence ℓn(θ∗+∆)−

ℓn(θ∗) ⩽ 0. In the last inequality, we use the Cauchy-Schwarz inequality.
Next we write the gradient of the loss function

∇ℓn(θ) = −
1
n

n∑
t=1

K∑
j=1

K∑
k=j

exp[x⊤
It,σt(k)θ]∑K

ℓ=j exp[x⊤
It,σt(ℓ)θ]

zIt,σt(j),σt(k) .

Zhu et al. (2023b) note that is a sub-Gaussian random variable and prove
that

∥∇ℓn(θ∗)∥2
Σ−1
n

⩽
CK4(d+ log(1/δ))

n

holds with probability at least 1 − δ, where C > 0 is a constant. Finally,
we plug the above bound into (F.7) and get that

γ∥∆∥2
Σn

⩽

√
CK4(d+ log(1/δ))

n
∥∆∥Σn

holds with probability at least 1−δ. We rearrange the inequality and since
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γ is a constant,

∥θ̂n − θ∗∥2
Σn

= ∥∆∥2
Σn

⩽
CK4(d+ log(1/δ))

n

holds with probability at least 1 − δ for some C > 0. This concludes the
proof.

F.3 Optimal Design for Ranking Feedback
The optimal design for (7.10) is derived as follows. First, we compute the
Hessian of ℓn(θ),

∇2ℓn(θ) =
1
n

n∑
t=1

K∑
j=1

K∑
k=j

K∑
k ′=j

exp[x⊤
It,σt(k)θ+ x⊤

It,σt(k ′)θ]

2
(∑K

ℓ=j exp[x⊤
It,σt(ℓ)θ]

)2 zIt,σt(k),σt(k ′)z⊤
It,σt(k),σt(k ′) .

In this work, we maximize the log determinant of relaxed ∇2ℓn(θ∗). Note
that the exact optimization is impossible because θ∗ is unknown. This can
be addressed in two ways.

Worst-case design: Solve an approximation whereθ∗-dependent terms
are replaced with a lower bound. We take this approach. Specifically, we
show in the proof of theorem F.3 that

∇2ℓn(θ) ⪰
e−4

K(K− 1)n

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz⊤
It,j,k = γΣn

forγ = e−4/2. Then we maximize the log determinant of a relaxed problem.
This solution is sound and justified, because we maximize a lower bound
on the original objective.

Plug-in design: Solve an approximation where θ∗ is replaced with a
plug-in estimate.

We discuss the pluses and minuses of both approaches next.
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Method Maximum prediction error Ranking loss
Dope (ours) 15.79± 1.08 0.107 ± 0.002
Plug-in (400) 19.75± 1.48 0.104± 0.003
Plug-in (300) 30.52± 3.00 0.103± 0.002
Plug-in (200) 65.75± 13.71 0.114± 0.003
Plug-in (100) 100.39± 10.72 0.142± 0.003
Optimal 9.22± 0.82 0.092± 0.002

Table F.1: Comparison of Dope with plug-in designs Plug-in and optimal
solution Optimal.

Prior works: Mason et al. (2022) used a plug-in estimate to design
a cumulative regret minimization algorithm for logistic bandits. Recent
works on preference-based learning (Zhu et al., 2023b; Das et al., 2024;
Zhan et al., 2024), which are the closet related works, used worst-case
designs. Interestingly, Das et al. (2024) analyzed an algorithm with a plug-
in estimate but empirically evaluated a worst-case design. This indicates
that their plug-in design is not practical.

Ease of implementation: Worst-case designs are easier to implement.
This is because the plug-in estimate does not need to be estimated. Note
that this requires solving an exploration problem with additional hyper-
parameters, such as the number of exploration rounds for the plug-in
estimation.

Theory: Worst-case designs can be analyzed similarly to linear models.
Plug-in designs require an analysis of how the plug-in estimate concen-
trates. The logging policy for the plug-in estimate can be non-trivial as
well. For instance, the plug-in estimate exploration in Mason et al. (2022)
is over Õ(d) special arms, simply to get pessimistic per-arm estimates.
Their exploration budget is reported in Table 1. The lowest one, for a
3-dimensional problem, is 6 536 rounds. This is an order of magnitude
more than in our fig. 7.1b for a larger 36-dimensional problem.

Based on the above discussion, we believe that worst-case designs strike
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a good balance between practicality and a theory support. Nevertheless, plug-
in designs are intriguing because they may perform well with a decent
plug-in estimate. To investigate if this happens in our experiments, we
repeat Experiment 2 in section 7.6 with K = 2 (logistic regression). We
compare three methods:

(1) Dope: This is our method. The exploration policy is π∗ in (7.6).
(2) Plug-in (m): This is a plug-in baseline. For the first m rounds,

it explores using policy π∗ in (7.6). After that, we compute the plug-in
estimate of θ∗ using (7.10) and solve the D-optimal design with it. The
resulting policy is used for exploration for the remaining n−m rounds.
Finally, θ∗ is estimated from all feedback using (7.10).

(3) Optimal: The exploration policy π∗ is computed using the D-
optimal design with the unknown θ∗. This validates our implementation
and also shows the gap from the optimal solution.

We report both the prediction errors and ranking losses at n = 500
rounds in table F.1. The results are averaged over 100 runs. We observe
that the prediction error of Dope is always smaller than that of Plug-in (6
times atm = 100). Optimal outperforms Dope but cannot be implemented
in practice. The gap between Optimal and Plug-in shows that an optimal
design with a plug-in estimate of θ∗ can be much worse than that with θ∗.
Dope has a comparable ranking loss to Plug-in atm = 300 andm = 400.
Plug-in has a higher ranking loss otherwise.

Based on our discussion and experiments, we do not see any strong
evidence to adopt plug-in designs. They would be more complex than
worst-case designs, harder to analyze, and we do not see benefits in our
experiments. This also follows the principle of Occam’s razor, which tells
us to design with a minimal needed complexity.
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Number of lists L 100 200 300 400 500 600 700 800
Time (seconds) 4.71 8.31 15.63 21.00 26.60 35.00 41.25 49.72

Table F.2: Computation time of policy π∗ in (7.6) as a function of the
number of lists L.

L = 50 L = 100 L = 200 L = 500
K = 2 0.12± 0.06 0.28± 0.12 0.37 ± 0.14 0.57 ± 0.21
K = 3 0.14± 0.06 0.24± 0.10 0.37 ± 0.15 0.50± 0.19
K = 4 0.13± 0.05 0.24± 0.08 0.35± 0.14 0.47 ± 0.18
K = 5 0.12± 0.04 0.21± 0.08 0.34± 0.12 0.45± 0.15

Table F.3: The ranking loss of Dope as a function of the number of lists L
and items K.

F.4 Ablation Studies
We conduct two ablation studies on Experiment 2 in section 7.6.

In table F.2, we report the computation time of policy π∗ in (7.6). We
vary the number of lists L and use CVXPY (Diamond and Boyd, 2016) to
solve (7.6). For L = 100, the computation takes 4 seconds; and for L = 800,
it takes 50. Therefore, it scales roughly linearly with the number of lists L.

In table F.3, we vary the number of lists L and items K, and report
the ranking loss of Dope. We observe that the problems get harder as L
increases (more lists to rank) and easier as K increases (longer lists with
more feedback).
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g appendix: optimal design for adaptive
in-context prompt design in large language
models

G.1 Proofs
This section contains the properties of our objective and proofs of our
main claims.

Properties of our objective

By the total variance decomposition for a linear model with observation
variance σ2, we get

max
k∈[K]

var[Y∗,k | x∗,k,HT+1] = max
k∈[K]

var[E[Y∗,k | x∗,k, θ∗,HT+1] | x∗,k,HT+1]

+ max
k∈[K]

E[var[Y∗,k | x∗,k, θ∗,HT+1] | x∗,k,HT+1]

= max
k∈[K]

σ2x∗,kTΣ̂−1
t x∗,k + σ

2 .

Therefore, the variance minimization of maxk∈[K] Y∗,k | x∗,k,HT+1 is a
combinatorial optimization problem. It can be formulated as follows

S∗ = argminS⊆[n],|S|=T f(S) , (G.1)

where the function f(S) = maxk∈[K] x∗,kT
(
Σ−1

0 + σ−2 ∑
i∈S xixiT

)−1 x∗,k

represents the uncertainty associated with any subset S, and S∗ denotes
the optimal subset of size T . If f(S) was monotone and supermodular in S,
we would have (1 − 1/e)-optimality guarantees for GO (Nemhauser et al.,
1978). We start with proving the monotonicity of f(S).

Lemma G.1. Function f(S) is monotonically decreasing.
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The claim is proved in section G.1. Now we state the definition of a
supermodular function and show that f(S) is not supermodular.

Definition G.2 (Supermodular function). Let [n] be a set of n elements. A
function f : 2[n] → R is supermodular if it satisfies the property of diminishing
marginal returns. For any S1 ⊆ S2 ⊆ [n] and x /∈ S2, we have f(S1 ∪ {x}) −
f(S1) ⩽ f(S2 ∪ {x}) − f(S2).

Lemma G.3. The function f(S) is not supermodular.

Proof. Take Σ0 = Id, fix K = 1, x1 = (1/
√

2, 1/
√

2), x2 = (0, 1), and x∗ =

(1, 0). Then f({2}) − f(∅) = 0 < 0.035714 ≈ f({1, 2}) − f({1}).

Proof of theorem G.1

Recall that the objective function is

f(S) = max
k∈[K]

x∗,kT
(
Σ−1

0 + σ−2
∑
i∈S

xixiT
)−1

x∗,k.

Without loss of generality, let σ2 = 1. Fix any j ∈ [n]\S and let S+ = S∪ {j}.
Then the objective value at S+ can be written as

f(S+) = max
k∈[K]

x∗,kT

Σ−1
0 +

∑
i∈S+

xixiT

−1

x∗,k = max
k∈[K]

x∗,kT (A + xjxjT)−1 x∗,k ,

where A = Σ−1
0 +

∑
i∈S xixiT. By the Sherman–Morrison formula, we

have

(A + xjxjT)−1
= A−1 −

A−1xjxjTA−1

1 + xjTA−1xj
.
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Now note that A−1xjxjTA−1

1 + xjTA−1xj
is a positive semi-definite matrix for any xj

and any positive semi-definite matrix A. As a result, x∗,kTA−1xjxjTA−1

1 + xjTA−1xj
x∗,k ⩾

0 holds for any x∗,k and thus

f(S+) = max
k∈[K]

x∗,kTA−1x∗,kT − x∗,kTA−1xjxjTA−1

1 + xjTA−1xj
x∗,k

⩽ max
k∈[K]

x∗,kTA−1x∗,kT = f(S) .

This proves our claim.

Proof of theorem 8.1

The proof is under the assumption that at round t, the training examples
can be partitioned as Xexamples = Sk ∪ Sk. The set Sk represents examples
that are close to x∗,k. The set Sk is convex and define αk ⩾ 0 such that
xTy ⩾ αk for all x, y ∈ Sk. The set Sk represents examples that are not
close to x∗,k. It is defined βk ⩾ 0 such that xTy ⩽ βk for all x ∈ Sk and
y ∈ Sk. Define αmin = mink αk, and βmax = βmax.

Define the set S = ∩Kk=1Sk as the set of all examples that are close to all
{x∗,k}

K
k=1 and S = ∪Kk=1Sk as the set of all examples that are not close to all

{x∗,k}
K
k=1. Assume S ̸= {∅} and |S| > T .

The inverse of the covariance matrix after t− 1 observations is

Σ̂−1
t = Λt = Id +

t−1∑
ℓ=1

XℓXℓT =

d∑
i=1

λt,ixt,ixt,iT .

The latter is the eigendecompositon of Λt, where λt,i is the i-th largest
eigenvalue and xt,i is the corresponding eigenvector. Note that Λ−1

t =∑d
i=1 λ

−1
t,ixt,ixt,iT. To simplify exposition, we assume that all examples

have unit length. We analyze the eigenvalues of Λt first.
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Lemma G.4. For all i ∈ [d], 1 ⩽ λt,i ⩽ t. Moreover, let Xℓ ∈ S hold for all
ℓ ∈ [t− 1]. Then λt,1 ⩾ α2

min(t− 1) + 1.

Proof. The first claim follows directly from the definition of Λt and that
∥Xℓ∥2 ⩽ 1. The second claim is proved using the definition of the maxi-
mum eigenvalue,

λt,1 = xt,1TΛtxt,1 ⩾ x∗,kT
(

Id +
t−1∑
ℓ=1

XℓXℓT
)

x∗,k ⩾ α2
min(t− 1) + 1 .

The last inequality follows from x∗,kTXℓ ⩾ αmin. This completes the proof.

We continue with claims about the eigenvectors of Λt.

Lemma G.5. Let Xℓ ∈ S hold for all ℓ ∈ [t − 1]. Then xt,1 ∈ S. Moreover, let
βmax ⩾ 1 − α2

min. Then xt,i ∈ S for all i ⩾ 2.

Proof. Since all Xℓ ∈ S and S is a convex set, xt,1 ∈ S. Now take any x ∈ S
and i ⩾ 2, and note that

(xTxt,i)2 ⩽
d∑
i=2

(xTxt,i)2 = 1 − (xTxt,1)2 ⩽ 1 − α2
min .

We use that
∑d
i=1(xTxt,i)2 = 1 and xTxt,1 ⩾ αmin. Therefore, when βmax ⩾

1 − α2
min, we have xt,i ∈ S for all i ⩾ 2.

Our analysis has two parts. First, we bound the approximation error
under the assumption that Xℓ ∈ S holds for all ℓ ∈ [T ]. Second, we
show how to choose αmin and βmax to guarantee this. We start with the
approximation error.
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Lemma G.6. Let Xℓ ∈ S hold for all ℓ ∈ [T ]. Then for any x∗,k

x∗,kTΛ−1
T+1x∗,k ⩽

1
α2

minT + 1 + (1 − α2
min) .

Proof. We start with

x∗,kTΛ−1
T+1x∗,k =

d∑
i=1

λ−1
T+1,ix∗,kTxT+1,ixT+1,iTx∗,k

⩽
(x∗,kTxT+1,1)

2

α2
minT + 1 +

d∑
i=2

(x∗,kTxT+1,i)
2 .

The inequality uses lower bounds in theorem G.4. Then we apply x∗,kTxT+1,1 ⩽

1 and
∑d
i=2(x∗,kTxT+1,i)

2 ⩽ 1 − α2
min.

Now we prove by induction that Xℓ ∈ S holds for all ℓ ∈ [T ].

Lemma G.7. Let Xℓ ∈ S hold for all ℓ ∈ [t−1]. Suppose that t ⩽ α2
min

(β+
√

2)βd
.

Then xt ∈ S.

Proof. Our algorithm chooses a example xt ∈ Swhen for all x∗,k

x∗,kTΛ−1
t xxTΛ−1

t x∗,k

1 + xTΛ−1
t x

⩾
x∗,kTΛ−1

t yyTΛ−1
t x∗,k

1 + yTΛ−1
t y

holds for any x ∈ S and y ∈ S. Since 0 ⩽ xTΛ−1
t x ⩽ 1 for any ∥x∥2 ⩽ 1, the

above event occurs when

min
k

(x∗,kTΛ−1
t x)2 = min

k
x∗,kTΛ−1

t xxTΛ−1
t x∗,k

⩾ 2 max
k∈[K]

x∗,kTΛ−1
t yyTΛ−1

t x∗,k = 2 max
k∈[K]

(x∗,kTΛ−1
t y)2 .
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We start with an upper bound on the right-hand side,

max
k∈[K]

|x∗,kTΛ−1
t y| ⩽ max

k∈[K]

d∑
i=1

λ−1
t,i |x∗,kTxt,ixt,iTy| ⩽ βmaxd .

Here we use λt,i ⩾ 1 (theorem G.4), and that xt,1Ty ⩽ βmax and x∗Txt,i ⩽
βmax when i ⩾ 2.

Now we bound the left-hand side as

min
k

|x∗,kTΛ−1
t x| ⩾ min

k
λ−1
t,1 |x∗,kTxt,1xt,1Tx|−

d∑
i=2

λ−1
t,i |x∗,kTxt,ixt,iTx|

⩾
α2

min
t

− β2
maxd .

To bound the first term, we use λt,1 ⩽ t, and that x∗Txt,1 ⩾ αmin and
xt,1Tx ⩾ αmin. To bound the second term, we use λt,i ⩾ 1, and that
x∗Txt,i ⩽ βmax and xt,iTx ⩽ βmax.

Now we chain all inequalities and get that our algorithm chooses a
example xt ∈ Swhen

t ⩽
α2

min

(βmax +
√

2)βmaxd
.

This completes the proof.

Proof of theorem 8.2

Consider the test examples {x∗}
K
k=1. Recall that Ht = (Xℓ, Yℓ)ℓ∈[t−1] is the

history till round t. Then the posterior variance is

Σ̂t =

(
Σ−1

0 + σ−2
t−1∑
ℓ=1

XℓXℓT
)−1
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and θ̂t = Σ̂t

(
Σ−1

0 θ0 + σ
−2 ∑t−1

ℓ=1 XℓYℓ

)
. Now fix a Xt at round t. Then

Yt = X⊤
t θ∗ + ϵt where θ∗ | Ht ∼ N

(
θ̂t, Σ̂t

)
and ϵt ∼ N

(
0,σ2). Then

θ∗|Ht+1 ∼ N
(
θ̂t+1, Σ̂t+1

)
holds for any Yt.

Now fix an xi ∈ Xexamples and add it to Σ̂t such that

Σ̂t,i =

(
Σ−1

0 + σ−2

(
t−1∑
ℓ=1

XℓXℓT + xix⊤
i

))−1

.

Define σ̂2
t,i,k = 1

m

∑m
j=1(Ỹ

(j,1)
t,i,k − Ỹ

(j,2)
t,i,k)

2 and the E[σ̂2
t,i,k] = σ2

t,i,k. Then
define σ2

t,i,max = maxk∈[K] E[σ̂2
t,i,k]. Then using Theorem G.8 we can show

that with probability (1 − δ)

σ2
t,i,max

[
1 − 2

√
log(1/δ)
m

]
⩽ max
k∈[K]

σ̂2
t,i,k ⩽ σ2

t,i,max

[
1 + 2

√
log(1/δ)
m

+
2 log(1/δ)

m

]
(G.2)

Setm ⩾ 8 log(1/δ) in (G.2). It follows then that

1
2σ

2
t,i,max ⩽ max

k∈[K]

1
m

m∑
j=1

(Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k)

2 ⩽
5
2σ

2
t,i,max.

Hence, to minimize the quantity maxk∈[K] Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k we should be

minimizing the variance 2 maxk∈[K] x⊤
∗,kΣ̂t,ix∗,k+σ

2. Observe that minimiz-
ing the variance in SAL leads to minimizing the quantity 2 maxk∈[K] x⊤

∗,kΣ̂t,ix∗,k+

σ2 which is same as minimizing the score maxk∈[K] x⊤
∗,kΣ̂t,ix∗,k for GO. The

claim of the theorem follows.

Lemma G.8. Fix round t ∈ [T ], a sample example xi, and a test example x∗,k,
and failure probability δ ∈ (0, 1). Suppose that m > 4 log(1/δ). Define σ̂2

t,i,k =



546

1
m

∑m
j=1(Ỹ

(j,1)
t,i,k − Ỹ

(j,2)
t,i,k)

2 and the E[σ̂2
t,i,k] = σ

2
i,k. Then

P

(
σ̂2
t,i,k ⩽ σ2

i,k

[
1 − 2

√
log(1/δ)
m

])
⩽ δ

holds with probability at least 1 − δ. Analogously,

P

(
σ̂2
t,i,k ⩾ σ2

i,k

[
1 + 2

√
log(1/δ)
m

+
2 log(1/δ)

m

])
⩽ δ

holds with probability at least 1 − δ.

Proof. Fix an xi ∈ Xexamples and add it to Σ̂t. Denote this new co-variance
matrix as Σ̂t,i such that

Σ̂t,i =

(
Σ−1

0 + σ−2

(
t−1∑
ℓ=1

XℓXℓT + xix⊤
i

))−1

.

Let Ỹ(1)
t,i,j = x⊤

∗,kθ∗ + ϵt,i,j,1, where θ∗ | Ht ∼ N
(
θ̂t, Σ̂t+1

)
and ϵt,i,j,1 ∼

N
(
0,σ2). This yields that Ỹ(1)

t,i,j ∼ N
(

x⊤
∗,kθ̂t+1, x⊤

∗,kΣ̂t,ix∗,k + σ
2
)

. Similarly

Ỹ
(2)
t,i,j = x⊤

∗,kθ∗+ϵt,i,j,2, whereθ∗ | Ht ∼ N
(
θ̂t+1, Σ̂t,i

)
and ϵt,i,j,2 ∼ N

(
0,σ2).

Therefore, we get that

Ỹ
(j,1)
t,i,k − Ỹ

(j,2)
t,i,k ∼ N(0, 2x⊤

∗,kΣ̂t,ix∗,k + σ
2).

Now we proceed the same way as in Lemma 2 of Lalitha et al. (2023). Using
Cochran’s theorem, we have that σ̂2

t,i,km/σ
2
i,k is a χ2 random variable with

m degrees of freedom. Then using (4.4) and Lemma 1 of Laurent and
Massart (2000) we can show that

P
(
m−

σ̂2
t,i,km

σ2
i,k

⩾ 2
√
m log(1/δ)

)
⩽ δ (G.3)
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Dividing both sides of (G.3) in the probability bym, and multiplying by
σ2
i,k, we can get the following

P
(
σ2
i,k(1 − 2

√
log(1/δ)/m) ⩾ σ̂2

t,i,k

)
⩽ δ.

Observe that 1 − 2
√

log(1/δ)/m > 0, we can divide both sides by it and
get the first claim of the lemma. The second claim is proved by (4.3) in
Laurent and Massart (2000), an immediate corollary of their Lemma 1,
we have

P
(
σ̂2
t,i,km

σ2
i,k

−m ⩾ 2
√
m log(1/δ) + 2 log(1/δ)

)
⩽ δ

The claim of the lemma follows.

G.2 Additional Experiments and Results
We use NVIDIA GeForce RTX 3090 GPU with 24GB RAM to load the Large
Language Models for inference. The Mistral-7B model requires less than
16GB RAM, and Vinuna-13B model requires less than 22 GB RAM during
execution. To run Falcon-40B model we use AWS ml-g5.12xlarge machine.
To run the full set of experiments it takes 24-27 hours of compute job. We
now briefly discuss the various datasets used in this work.

Datasets

We now briefly describe the datasets used for our experiments. All the
real-life datasets are from UCI (Markelle Kelly, 1988) and OpenML (Van-
schoren et al., 2013) repositories. We use 4 classification and 3 regression
datasets from UCI and OpenML. Additionally, we use 2 custom datasets for
movie names and entity names for classification task in our experiments.



548

These are as follows:
(1) Iris: We use this UCI dataset for classification task. This dataset consists
of four features of flowers and three classes of flowers. We use all four
features in the prompts as well as estimating the score for selecting the
next action. The dataset consists of 150 instances. We randomly choose
K = 20 as test examples and the remaining instances as training examples.
(2) Banknote-authentication: We use this OpenML dataset for classification
task. This dataset consists of five features of banknotes and two classes for
identifying fake or original banknote. Out of these five features, we use
four features in the prompts as well as estimating the score for selecting
the next action. The dataset consists of 150 instances. We randomly choose
K = 20 as test examples and the remaining instances as training examples.
(3) Balance-scale: We use this OpenML dataset for classification task. This
dataset consists of five features of a scale and three classes of whether the
scale tips left/right or is balanced. Out of these five features, we use four
features in the prompts as well as estimating the score for selecting the
next action. The dataset consists of 625 instances. We randomly choose
K = 20 as test examples and the remaining instances as training examples.
(4) Thyroid-new: We use this OpenML dataset for classification task. This
dataset consists of six features for thyroids and three classes. Out of these
six features, we use five features in the prompts as well as estimating the
score for selecting the next action. The dataset consists of 215 instances.
We randomly choose K = 20 as test examples and the remaining instances
as training examples.
(5) Movie-name: We use this custom dataset for classification task. This
dataset consists of movie names across five genres (classes) romance,
horror, thriller, sport, and action. We convert the movie names into 768
dimensional feature embeddings using Instructor embeddings. Note that
in the prompt to the LLM we only pass the movie names and the goal is
to identify the common genre. The dataset consists of 100 instances. We
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randomly choose K = 20 as test examples and the remaining instances as
training examples.
(6) Movie-theme: We use this custom dataset for classification tasks in iden-
tifying a common theme between pairs of movies. This dataset consists
of movie names across five themes (classes) good-vs-evil, man-vs-nature,
redemption, Love conquers all, and coming-of-age. We convert the movie
names into 768 dimensional feature embeddings using Instructor embed-
dings. Note that in the prompt to the LLM we only pass the pair of movie
names and the goal is to identify the common theme. The dataset consists
of 100 instances. We randomly choose K = 20 as test examples and the
remaining instances as training examples.
(7) Entity-name: We use this custom dataset for classification task. This
dataset consists of entity names across five entity types (classes) like
mountains, seas, rivers, vehicles, and celebrities. Again, we convert the
entity names into 768 dimensional feature embeddings using Instructor
embeddings. Note that in the prompt to the LLM we only pass the entity
names and the goal is to identify the entity type. The dataset consists of
100 pairs of instances. We randomly choose K = 20 pairs as test examples
and the remaining instances as training examples.
(8) Fifa: We use this OpenML dataset for the regression task. This dataset
consists of six features of players and the clubs they joined as targets.
Out of these six features, we use five features in the prompts as well as
estimating the score for selecting the next action. The dataset consists of
18063 instances. We randomly choose K = 20 test examples and another
200 examples as training examples.
(9) Machine-cpu: We use this OpenML dataset for regression tasks. This
dataset consists of seven features of machine cpu and the target variable
is the performance of the cpu. Out of these seven features, we use five
features in the prompts as well as estimating the score for selecting the
next action. The dataset consists of 209 instances. We randomly choose
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K = 20 test examples and the remaining examples as training examples.

ARC Experiment

In the recent works of Mirchandani et al. (2023); Srivastava et al. (2022)
they showed that LLMs behave as general pattern-matching machine. In
fact they showed that LLMs can be used to solve tasks from Abstract
Reasoning Corpus (ARC) tasks. In the following experiments, we choose
two such tasks: (1) ARC expansion and contraction experiment and (2)
ARC rotation experiment.

(1) ARC expansion and contraction experiment: In the expansion
and contraction experiment, there are two sets of matrices of dimension
4× 4 which constitute half the examples of the feature space X. The first
set of input matrices have integer values in their center 2× 2 cells while all
the other cells are 0. The label space Y of this 4× 4 matrix is also a 4× 4
matrix where the 4 inner cells have moved to the 4 corners. These matrices
are termed as expansion matrices.

Similarly, the other set of 4× 4 matrices have the 4 non-zeros values
in their corners. These constitute the remaining examples in X. Then the
label space Y is given by 4× 4 matrix where the four non-zeros cells come
to the center and all the other cell values are 0. These matrices are termed
as contraction matrices. This is shown in Figure G.1a.

Therefore, the feature space X consists of both the expansion and con-
traction matrices. At every trial, and n training examples and K test ex-
amples are chosen randomly from X. Then we run all baselines for T
iterations where the classification accuracy is calculated if the LLM is able
to predict the exact matching. This experiment is shown in Table 8.3.

(2) ARC rotation experiment: In the rotation experiment, there are
again two sets of matrices of dimension 4 × 4 which constitute half the
examples of the feature space X. The first set of matrices are have integer
values in their four corner cells while all the other cells are 0. The label
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space Y of this 4× 4 matrix is also a 4× 4 matrix where the 4 corner cell
values have moved 90◦ in the clockwise direction. These matrices are
termed as clockwise matrices.

Similarly, the other set of 4× 4 matrices have the 4 non-zeros values
in their corners. These constitute the remaining examples in the feature
space X. Then the label space Y is given by 4 × 4 matrix where the four
non-zeros cells have moved 15◦ in the anti-clockwise direction and all
the other cell values are 0. These matrices are termed as anti-clockwise
matrices. This is shown in Figure G.1b.

Therefore, the feature space X consists of both the clockwise and anti-
clockwise matrices. At every trial, n training examples andK test examples
are chosen randomly. Then we run all the baselines for T iterations where
the classification accuracy is calculated if the LLM is able to predict the
exact matching. This experiment is shown in Table 8.3.
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(a) Classification on ARC Expansion and
Contraction Experiment
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(b) Classification on ARC Rotation
Experiment

Figure G.1: Explanation of ARC tasks
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PCFG Experiment

In this experiment the goal is to predict the next output of a sequence.
In the following experiments we choose two such tasks: (1) PCFG add-
subtract experiment and (2) PCFG repeat experiment.

(1) PCFG add-subtract experiment: In the add-subtract experiment,
there are two sets of sequence of 4 integers. The first set of sequence of 4
integers consists of odd integer values which constitute half the examples
in the feature space X. The label space Y of this sequence of 4 odd examples
is sequences of 5 integers where the last integer is padded to the original
sequence by adding one to the last odd integer. These sequences are
termed as add examples.

Similarly, the other set of examples consists of a sequence of 4 even
integer values which constitute the remaining examples in the feature
space X. The label space Y of this sequence of 4 even integer examples is
a sequence of 5 integers where the last integer is padded to the original
sequence by subtracting one from the last even integer. These examples
are termed as even examples. This is shown in Figure G.2a.

Therefore, the feature space X consists of both the odd and even se-
quence of 4 integer value examples. At every trial, n training and K test
examples are chosen randomly. Then we run all the baselines for T itera-
tions where the classification accuracy is calculated if the LLM is able to
predict the exact matching. This experiment is shown in Table 8.3.

(2) PCFG repeat experiment: In the repeat experiment, there are two
sets of sequence of 4 integers. The first set of sequence of 4 odd integer
values constitute half the examples of the feature space X. The label space
Y of this sequence of 4 integers examples is a sequence of 5 integers where
the last integer is padded to the original sequence by repeating the first
odd integer. These sequences are termed as odd-repeat examples.

Similarly, the other set of examples consists of sequence of 4 even
integer values which constitute the remaining examples in the feature
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space X. The label space Y of these sequence of 4 integer value examples
is a sequence of 5 integers where the last integer is padded to the original
sequence by repeating the second even integer. These examples are termed
as even-repeat examples. This is shown in Figure G.2b.

Therefore, the feature space X consist of both the odd-repeat and even-
repeat examples. At every trial, n training examples and K test examples
are chosen randomly. Then we run all the baselines for T iterations where
the classification accuracy is calculated if the LLM is able to predict the
exact matching. This experiment is shown in Table 8.3.

Add 1 to 
odd 
sequence

Subtract 1 
from even 
sequence

  1  3  5   1    3   5   6

  2  4  6   2   4   6   5

+1

-1

 51  37  25

(a) Classification on PCFG
add-subtract Experiment

  1  3  5   1    3   5   1

  2  4  6   2   4   6   4

 42  30  88

(b) Classification on PCFG
repeat Experiment

Figure G.2: Explanation of PCFG task.

G.3 Prompt Examples
Classification Dataset Prompts : Below we give an example of how we
use the prompts to be used in the LLM for the Iris misclassification task.
Similar types of prompts can be found in Dinh et al. (2022); Suzgun et al.
(2022). This is shown in Figure G.3a. Note that since we have the feature
representation of the training and test examples from the dataset, we
directly use them as xi and x∗,k.

Regression Dataset Prompts : In Figure G.3b we give an example of
a prompt for regression task in Fifa dataset. Note that since we have the
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feature representation of the training and test examples from the dataset,
we directly use them as xi and x∗,k.

(a) Classification Prompt (b) Regression Prompt

(c) Movie Prompt (d) Entity Prompt

Figure G.3: Prompt examples for Classification, Regression, Movie, and
Prompt

Movie Theme Experiment: We use a similar technique as in Iris dataset
for this setting. The labels of the pairs of movies belong to 5 classes as
follows: good-vs-evil, man-vs-nature, redemption, Love conquers all, and
coming-of-age. At every iteration, we pass K pairs of movie test examples
where each x∗,k is a pair of movies. In the example below we have x∗,1 =

[’Swallows and Amazon (2016), Grizzly (1976)’]. Note that we feed the
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(a) Theme Prompt (b) PCFG Prompt

Figure G.4: Prompt examples for Theme and PCFG tasks

(a) ARC Prompt

Figure G.5: Prompt examples for ARC task

natural language text to the LLM as prompts as shown in Figure G.4a.
However, to run GO, SAL, and other baselines we require a featurization of
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these natural language prompts. We obtain a 768 dimensional featurized
representation of the pairs of movies ’Monsters Inc, Frozen (2013)’ using
Instructor embedding (Su et al., 2022). This constitutes xi ∈ R768 and
x∗,k ∈ R768.

Movie Name Experiment: We use a similar technique as in Iris dataset
for this setting. The labels of the movie genres belong to 5 classes as
follows: romance, horror, thriller, sport, and action. At every iteration
we pass a set of test movie name examples where each x∗,k is now movie
name. Note that we feed the natural language text to the LLM as prompts
as shown in Figure G.3c. However, to run GO, SAL, and other baselines
we require a featurization of these natural language prompts. We obtain
a 768 dimensional featurized representation of the movie names using
Instructor embedding (Su et al., 2022). This constitutes xi ∈ R768 and
x∗,k ∈ R768.

Entity Name Experiment: The labels of the entity genres belong to 5
classes as follows: mountains, seas, rivers, vehicles, and celebrities. At
every iteration, we pass a set of test entity name examples where each
x∗,k is now an entity name. Note that we feed the natural language text to
the LLM as prompts as shown in Figure G.3d. However, to run GO, SAL,
and other baselines we require a featurization of these natural language
prompts. Again, we obtain a 768 dimensional featurized representation
of the entity names using Instructor embedding (Su et al., 2022). This
constitutes xi ∈ R768 and x∗,k ∈ R768.

PCFG Experiment: We show an example of this prompt in Figure G.4b.
Here we concatenate the sequence to obtain training examples xi and test
examples x∗,k. So a sequence of 4 integers of length 4 will be represented
by xi, x∗,k ∈ R16. Similarly the label Yi and Y∗,k consist of sequence of 5
integers of length 4 which we concatentate to get a vector of length R20.

ARC Experiment: We show an example of this prompt in Figure G.5a.
Here we vectorized the 4× 4 matrix to obtain training examples xi ∈ R16
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and test examples x∗,k ∈ R16. Similarly the label Yi and Y∗,k consist of
vectorized matrices of length R16.



558

G.4 Table of Notations

Notations Definition
n Total unlabeled exam-

ples
d Dimension of the fea-

ture
X Feature set
Y Label space
θ∗ Unknown model pa-

rameter
xi Feature of sample ex-

ample i
x∗,k k-th test example
f(x,θ∗) Model
Y∗ Label
Ht = (Xℓ, Yℓ)ℓ∈[t−1] History of t − 1 previ-

ously labeled examples
p(· | x,Ht) Distribution of the la-

bel of example x condi-
tioned on Ht

θ0 Prior mean of the un-
known model parame-
ter θ∗

Σ0 Prior mean of the un-
known model parame-
ter θ∗

Σ̂t =
(
Σ−1

0 + σ−2 ∑t−1
ℓ=1 XℓXℓT

)−1
Posterior covariance

Lt Set of labeled examples
Ut Set of unlabeled exam-

ples
θ̂t,i,j Posterior mean

Table G.1: Table of Notations for GO



 

 

ProQuest Number:  
 
 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 
 
 

  
 
 
 

Distributed by  
ProQuest LLC a part of Clarivate (         ). 

Copyright of the Dissertation is held by the Author unless otherwise noted. 
 
 

This work is protected against unauthorized copying under Title 17,  
United States Code and other applicable copyright laws. 

 
 

This work may be used in accordance with the terms of the Creative Commons license  
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

 
 

ProQuest LLC 
789 East Eisenhower Parkway 

Ann Arbor, MI 48108 USA 

31841510

2025


	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Introduction and Overview
	Part 2: Adaptive Data Collection for Policy Evaluation in MDPs and Heteroscedastic Linear Bandits
	Part 3: Adaptive Data Collection in Multi-task Learning
	Adaptive Data Collection for Preference Elicitation, Prompt Designing, and Alignment in LLMs


	Adaptive Data Collection for Policy Evaluation
	Revar: Strengthening policy evaluation via reduced variance sampling
	Background
	Related Work
	Optimal Data Collection in Multi-armed Bandits
	Optimal Data Collection in Tree MDPs
	Optimal Data Collection Beyond Trees
	Empirical Study
	Conclusion And Future Works

	Speed: Optimal design for policy evaluation in linear heteroscedastic bandits
	Preliminaries
	Related Work
	Optimal Design for Policy Evaluation
	Loss of the Oracle
	SPEED and Regret Analysis When Variance is Unknown
	Experiments
	Conclusions and Future Directions

	SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDPs 
	Introduction
	Preliminaries
	Related Works
	Intractability and Lower Bounds
	Agnostic Algorithm for Safe Policy Evaluation
	Extension to DAG
	Experiments
	Conclusions and Future Directions


	Adaptive Data Collection for Multi-task Learning
	Multi-task Representation Learning for Fixed Confidence Pure Exploration in Bilinear Bandits
	Preliminaries
	Pure Exploration in Single-Task Bilinear Bandits
	Multi-task Representation Learning
	Experiments
	Conclusions and Future Directions

	Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured Bandit Learning
	Background
	Proposed Algorithm PreDeToR
	Empirical Study: Non-Linear Structure
	Empirical Study: Linear Structure and Understanding the Exploration of PreDeToR
	Empirical Study: Importance of Shared Structure and Introducing New Arms
	Theoretical Analysis of Generalization
	Conclusions, Limitations and Future Works


	Adaptive Data Collection for Preference Elicitation, Prompt Designing, and LLM Alignment
	Optimal Design for Human Preference Elicitation
	Setting
	Related Work
	Optimal Design and Matrix Kiefer-Wolfowitz
	Learning with Absolute Feedback
	Learning with Ranking Feedback
	Experiments
	Conclusions

	Optimal Design for Adaptive In-Context Prompt Design in Large Language Models
	Setting
	Related Work
	Algorithms
	Analysis
	Experiments
	Conclusions


	Conclusion
	Conclusion
	References
	Appendix: ReVar: Strengthening Policy Evaluation via Reduced Variance Sampling
	Optimal Sampling in Bandit Setting
	Optimal Sampling in Three State Stochastic Tree MDP
	Three State Deterministic Tree Sampling
	Three State Stochastic Tree Sampling with Varying Model
	Multi-level Stochastic Tree MDP Formulation
	MSE of the Oracle in Tree MDP
	Support Lemmas
	Regret for a Deterministic L-Depth Tree
	DAG Optimal Sampling
	Additional Experimental Details
	Table of Notations

	Appendix: SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits
	Bandit Regret Proofs
	Regret Lower Bound
	Additional Experiments
	Table of Notations

	Appendix: SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDPs
	Intractable MDP
	Tractable MDP and Lower Bounds
	Proof of Tree Agnostic MSE
	Proof of Tree Oracle MSE
	Support Lemmas
	Additional Experimental Details
	Table of Notations

	Appendix: Multi-task Representation Learning for Pure Exploration in Bilinear Bandits
	Probability Tools and Previous Results
	G-optimal design on rotated arms
	Application of Stein's Lemma
	Single-task Pure Exploration Proofs
	Multi-Task Pure Exploration Proofs
	Additional Experimental Details
	Table of Notations

	Appendix: Pretraining Decision Transformers with Reward Prediction for In-Context Structured Bandit Learning
	Experimental Setting Information and Details of Baselines
	Empirical Study: Bilinear Bandits
	Empirical Study: Latent Bandits
	Connection between PreDeToR and Linear Multivariate Gaussian Model
	Empirical Study: Increasing number of Actions
	Empirical Study: Increasing Horizon
	Empirical Study: Increasing Dimension
	Empirical Study: Increasing Attention Heads
	Empirical Study: Increasing Number of Tasks
	Exploration of PreDeToR(-)
	Exploration of PreDeToR(-) in New Arms Setting
	Data Collection Analysis
	Empirical Validation of Theoretical Result
	Empirical Study: Offline Performance
	Theoretical Analysis
	Generalization and Transfer Learning Proof for PreDeToR
	Table of Notations

	Appendix: Optimal Design for Human Preference Elicitation
	Proofs
	Supporting Lemmas
	Optimal Design for Ranking Feedback
	Ablation Studies

	Appendix: Optimal Design for Adaptive In-Context Prompt Design in Large Language Models
	Proofs
	Additional Experiments and Results
	Prompt Examples
	Table of Notations



